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Abstract. Conventional incentive mechanisms were designed for business envi-
ronments involving static business processes and a limited number of actors. They
are not easily applicable to crowdsourcing and other social computing platforms,
characterized by dynamic collaboration patterns and high numbers of actors, be-
cause the effects of incentives in these environments are often unforeseen and
more costly than in a well-controlled environment of a traditional company.

In this paper we investigate how to design and calibrate incentive schemes for
crowdsourcing processes by simulating joint effects of a combination of differ-
ent participation and incentive mechanisms applied to a working crowd. More
specifically, we present a simulation model of incentive schemes and evaluate it
on a relevant real-world scenario. We show how the model is used to simulate
different compositions of incentive mechanisms and model parameters, and how
these choices influence the costs on the system provider side and the number of
malicious workers.

Keywords: rewards, incentives, crowdsourcing, social computing, collective
adaptive systems.

1 Introduction

Research on incentives in crowdsourcing systems has been increasingly attracting
interest recently (e.g., [19,11,15,9]). Today’s commercial crowdsourcing systems
mostly deal with simple tasks and lack worker interactions and dependencies. Such
collaborative patterns in many ways resemble traditional piece-work, enabling use of
conventional pay-for-performance incentive mechanisms [16]. These existing incentive
mechanisms are based upon statistical models (e.g., agency theory) that take into con-
sideration workers engaging in contractual, long-term relationships with a traditional
company and seeking to maximize their utility metrics (see Section 2). However, as
social computing systems grow more complex (e.g., Collective Adaptive Systems1) the
web scale and unstable nature of crowd worker interactions with the system makes the
use of traditional incentives unpredictable and inappropriate.

1 http://focas.eu/
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Conventional incentive models completely disregard social characteristics of the
crowd, such as coordinated group actions, social/regional/ethnic peculiaritites, volun-
tary work [6], importance of reputation/flaunting [18], or web-scale malicious behavior
[21]. An additional complication is that these phenomena change often and characterize
different subsets of the crowd differently in different moments. This makes development
of appropriate mathematical incentive models difficult. Specifically, the root cause lies
in insufficient understanding of the implications arising from a particular combination
of worker participation patterns and applied incentive schemes.

The system designer needs to consider additional factors, such as: emerging, unex-
pected and malicious worker behavior, incentive applicability, range of stability, reward
fairness, expected costs, reward values and timing. Failing to do so leads to exploding
costs and work overload, as the system cannot scale with the extent of user participation.
Unbalanced rewards keep new members from joining or cause established members to
feel unappreciated and leave. Ill-conceived incentives allow users to game the system,
prove ineffective against vandalism, or assign too many privileges to particular mem-
bers tempting them to abuse their power [13].

This calls for a systematic approach in designing and evaluating incentive schemes
before deployment on real-world social computing systems. In [16] we surveyed ex-
isting incentive practices in traditional companies and different crowdsourcing plat-
forms and illustrated the shortcomings of applying conventional incentive mechanisms
in crowdsourcing environments. We then proposed how to combine proven atomic in-
centive mechanisms into scalable and portable incentive schemes suitable for social
computing systems. Based on these conclusions, in [15,17] we presented a model and
a system capable of deploying and executing such mechanisms. Continuing on this
line of research in this paper we now investigate how to select, customize and eval-
uate appropriate atomic incentive mechanisms and how to compose them for a given
crowdsourcing scenario. Specifically, we propose modeling and simulating various par-
ticipation options available to workers, activities and costs on the system provider side,
how user actions are transformed into rewards, and how these rewards in turn influence
user behavior. Further justification for this approach is presented in Section 2.

The contributions of this paper are:

1. Abstract simulation model of incentive mechanisms for crowdsourcing (Section 3).
2. Concrete incentive model for a real-world crowdsourcing scenario based on 1.
3. Complete modeling and simulation methodology, detailing the implementation and

evaluation processes to design a concrete incentive model such as 2. (Section 5)

The validity and capabilities of the model and the methodology are evaluated through
a relevant simulation scenario.

The remainder of this paper is structured as follows. Section 2 provides a discussion
on related work and our previous work. Section 3 provides an overview of our ap-
proach, the abstract incentive model and the simulation rationale. Section 4 presents
two relevant scenarios that we use as the environment to demonstrate and evaluate
the methodology. We discuss the methodology and concrete design decisions in Sec-
tion 5. A scenario case-study in Section 6 demonstrates the simulation’s usefulness to
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provide insights into behavior and effectiveness of selected incentive mechanisms and
other design decisions. Section 7 gives an outlook on future work and concludes this
paper.

2 Background and Related Work

Previous research on incentives can be roughly categorized in two groups. One group
seeks to find optimal incentives in formally defined environments through precise math-
ematical models (e.g., principal-agent theory [8,2], game theory [4,7]). Both the agent
(worker) and the authority (employer) are seen as entities deciding on their actions
with the exclusive goal of maximizing gain or achieving a predefined goal. Although
successfully used in microeconomic models, these incentive models do not fully cap-
ture the diversity and unpredictability of human behavior that becomes accentuated in
a crowdsourcing environment. These disadvantages (see [11]) prompted the advent of
another direction in research of incentives in crowdsourcing.

The other group examines the effects of incentives by running experiments on exist-
ing crowdsourcing platforms and rewarding real human subjects with actual monetary
rewards (e.g., [9,11]). The major disadvantages of this approach are its high cost and
duration. Furthermore, although seemingly yielding realistic findings, there is evidence
that the low amounts of monetary rewards used in these experiments make the findings
applicable only for a very limited range of simple activities, such as image tagging and
text translation. These and other shortcomings that this type of research suffers from are
listed in [1].

In contrast to these two approaches, our intention is not to devise novel nor optimal
incentive mechanisms for crowdsourcing, but rather to offer system designers a method-
ology for quickly selecting, composing and customizing existing, real-world atomic in-
centive mechanisms [16,19], and roughly predicting the effects of their composition in
dynamic crowdsourcing environments. The model and simulation parameters can be
changed dynamically, allowing quick testing of different incentive scheme setups and
behavioral responses at low cost. The schemes can then be deployed on systems such
as [15,17] and provided as a service to the third parties.

Our simulation approach allows modeling of incentives and responses of workers of
arbitrary complexity. Specifically, we employ principles of agent-based social simula-
tion [10,5], an effective and inexpensive scientific method for investigating behavioral
responses of large sets of human subjects. As we are primarily interested in investigat-
ing how reputation affects (malicious) behavior, we characterize each agent by repu-
tation metric, as laboratory experiments confirmed that reputation promotes desirable
behavior in a variety of different experimental settings [20,12,14,18].

However, unlike the usual approach where agents interact directly (and thus benefit
from cooperative behavior or suffer from defective behavior), we introduce a provider
that facilitates interactions and determines the benefits or costs of those interactions.
Reputation allows the provider to assess an agents reliability. Consequently, pure rep-
utation sharing alone is insufficient. We require additional incentive mechanisms to
obtain cooperative behavior beyond the users intrinsic level. Further differences to the
conventional agent-based simulation include the explicit, detailed modeling of the un-
derlying collaboration patterns, thereby building upon our previous work [3].
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3 Incentive Mechanisms for Crowdsourcing Processes

Any incentive mechanism in general involves two interested parties - an authority and a
worker (actor, agent). The authority is interested in stimulating, promoting or discour-
aging certain behavioral responses in workers. The incentive exhibits its psychological
effect by promising the worker a reward or a punishment based on the actions the worker
will perform. The wish to get the reward or escape the punishment drives the worker’s
decisions on future actions. The reward (punishment) can be material or psychological
(e.g., a change of status in a community – ranking, promotion). The type, timings and
amounts of reward need to be carefully considered to achieve the wanted effect of influ-
encing a specific behavior in a planned direction. In addition, introduction of incentives
introduces additional costs for the authority who hopes to compensate for them through
the newly arisen worker behavior (e.g., increased productivity).

However, as soon as an incentive mechanism is introduced, it produces dysfunctional
behavioral responses in the worker population. The workers adapt to the new rules and
change their working patterns, often in unpredictable or even malicious ways, trying
to misuse the new incentive to profit more than the rest of the population [13]. The
authority compensates for this by introducing other incentive mechanisms targeting the
dysfunctional behavior, further increasing the authority-side costs, and causing new
types of dysfunctional behavior. However, once the proper combination of incentive
mechanisms is put in place and calibrated, the system enters a stable state. The problem
with the crowdsourcing processes is that the system may not stay long in a stable state
due to an unforeseen change in worker participation or collaboration pattern. Therefore,
the incentive setup needs to be reconfigured and re-calibrated as quickly as possible, in
order to avoid incurring high costs to the authority. This feedback control-loop involving
the authority and the worker represents the actual incentive mechanism that we model
and simulate in this paper.

Modeling an incentive mechanism, therefore, always involves modeling both the
authority and the worker side, as well as the possible interactions between them. In
Figure 1 we show an abstract representation of the model of incentive mechanism that
we implement in the following sections.

Workers differentiate from each other by having different sets of personal character-
istics (e.g., accuracy, speed, experience). The characteristics are determined by a private
set of variables stored in the internal state S . Usually, the variables are normally dis-
tributed across the worker population, although particular variables can be intentionally
given predefined values to provoke a certain type of behavior. The internal state also
contains records of worker’s past actions. The internal state is private to the worker, and
is used as one of the inputs for the decision-making function fa that chooses the next
action to perform.

Apart from the internal state, each worker is characterized by the publicly exposed set
of performance metrics M that are defined and constantly updated by the authority for
each worker. The performance metrics reflect the authority’s perception of the worker’s
past interactions with the system (e.g., trust, rank, expertise, responsiveness). Knowing
this allows the worker to decide better on his future actions. For example, knowing that
a poor reputation will disqualify him from getting a reward in future may drive the
worker to work better or to quit the system altogether. It also allows him to compare
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Fig. 1. Incentive mechanisms need to capture the interaction between worker and authority

with other workers. Therefore, the set of performance metrics is another input for the
decision-making function fa.

The third input for the decision-making function fa is the set of promised rewards
(punishments) R. Rewards are expressed as publicly advertised amounts/increments in
certain parameters that serve as the recognized means of payment/prestige within the
system (e.g., money, points, stakes/shares, badges). They are specified per action per
artifact and per performance metrics, thus making them also dependent per user. For
example, a reward may promise an increase of at least 100 points to any/first user who
performs the action of rating an artifact. The amount of points can then be further in-
creased or decreased depending on the user’s reputation.

Worker interacts with the authority solely by performing actions over artifacts (K)
offered to the worker population by the authority. Worker’s behavior can thus be de-
scribed as a sequence of actions in time, interleaved with periods of idling (idling be-
ing a special-case of action). The set of possible actions is the same for every worker.
However, the effects of the execution of an action may be different, depending on the
worker’s personal characteristics from the internal state S . For example, a worker with
innate precision and bigger experience can improve an artifact better than the worker
not possessing those qualities.

As previously stated, worker’s next action is selected through the use of a decision-
making function fa = f (S ,M,R) potentially considering all of the following factors:
a) the statistically or intentionally determined personality of the worker; b) historical
record of past actions; c) authority’s view of one’s own performance; d) performance
of other workers; and e) promised rewards, with respect to the current state of one’s
performance metrics. The decision-making function is arbitrarily defined by the system
designer. For example, we can use a utility-maximization function, as described in the
papers cited in Section 2.

The authority’s motivation for offering artifacts for processing to the crowd is to ex-
ploit the crowd’s numerosity to either achieve higher quality of the artifacts (e.g., in
terms of accuracy, relevance, creativity), or lower the cost (e.g., in terms of time or
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money). This motivation guides the authority’s choice of incentive mechanisms. Au-
thority has at its disposal a number of incentive mechanisms IMi. Each one of them
should be designed to target/modify only a small number of very specific parameters
(see later). Thus, it is the proper addition or composition of incentive mechanisms that
allows the overall effect of an incentive scheme, as well as fine-tuning and runtime
modifications.

An incentive mechanism IM takes as inputs: 1) the current state of an artifact Ki;
2) the current performance metrics of a worker M j; and optionally 3) the output from
another incentive mechanism returning the same type of reward – R′ak . The output of an
incentive mechanism is the amount/increment of the reward Rak to offer to the worker
M j for the action ak over artifact Ki.

IM : (Ki,M j,R
′
ak )→ Rak (1)

The true power of incentive mechanisms lies in the possibility of their combination.
The reward ( fR) can be calculated through a number of additions (+) and/or functional
compositions (◦) of different incentive mechanisms. For example, a worker may be
given an increment in points for each time he worked on an artifact in the past. Each of
those increments can then be modified, depending on how many other workers worked
on that same artifact. In addition, the total increment in points can be further modified
according to the worker’s current reputation. The finally calculated increment value
represents the promised reward. The set of finally calculated rewards per worker Rw =

{ fR1 , ..., fRz} is then advertised to the workers, influencing their future behavior, and
closing the feedback loop.

The major difficulty in designing a successful incentive scheme lies in properly choos-
ing the set of incentive parameters (performance metrics, incentive mechanisms, and
their compositions). Often, the possible effects when using one set of parameters are
unclear at design time, and an experimental or a simulation evaluation is needed to de-
termine them. A proven set of incentive parameters is usually called an incentive scheme.

4 Motivating Scenarios

Here we present two relevant scenarios for which our simulation model and methodol-
ogy can be used to design and evaluate appropriate incentive schemes.

Citizen-Driven Traffic Reporting. Local governments have a responsibility to pro-
vide timely information on road travel conditions. This involves spending consider-
able resources on managing information sources as well as maintaining communication
channels with the public. Encouraging citizens to share information on road damages,
accidents, rockfalls, or flooding reduces these costs while providing better geographi-
cal coverage and more up to date information2. Such crowdsourcing process, however,
poses data quality related challenges in terms of assessing data correctness, complete-
ness, relevance, and duplication.

2 For a real world example visit the Aberdeen City Council’s SmartJourney initiative at
http://smartjourney.co.uk/

http://smartjourney.co.uk/
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Crowdsourced Software Testing. Traditional software testing is a lengthy and expen-
sive process involving teams of dedicated engineers. Software companies3 may decide
to partially crowdsource this process to cut time and costs and increase the number and
accuracy of detected defects. This involves letting the remote testers detect bugs in dif-
ferent software modules and usage environments and submitting bug reports. Testers
with different reputations provide reports of varying quality and change the assigned
bug severity. As single bugs can be reported multiple times in separate reports, testers
can also declare two reports as duplicates.

The two scenarios exhibit great similarities. The expected savings in time and money
can in both cases be outweighed by an incorrect setup and application of incentive
mechanisms. Furthermore, the system could suffer from high numbers of purposely
incorrect or inaccurate bug report submissions, driving the processing costs high. For
the purpose of this paper, we join and generalize the two scenarios into a single, abstract
one that we will use in our simulation setup:

The Authority seeks to lower the time and cost of processing a large number of
Reports on various Situations occurring in the interest domain of the Authority. The
Workers are independent agents, occasionally and irregularly engaging with the system
managed by the Authority to perform one of the following Actions: Submit a new Re-
port on a Situation, Improve an existing Report, Rate the accuracy and importance of an
existing Report, inform the Authority of his belief that two existing Reports should be
considered Duplicates. The Worker actions are driven by the combination of the follow-
ing factors: a) possibility to earn Points (translating to increased chances of exchanging
them for money); b) possibility to earn Reputation (translating to a higher status in the
community); and c) the intrinsic property of people to contribute and help or to behave
maliciously. In order to influence and (de-)motivate workers, the Authority employs a
number of Incentive Mechanisms, collectively referred to as Incentive Scheme.

This scenario also needs to address the following challenges:

– Crowdsourced report assessment. The effort required for manual validation of wo-
rker-provided reports may easily outweigh the gained effort and cost reduction from
crowdsourced reporting in the first place. Hence, workers need to be properly stimu-
lated to supplement and enrich existing reports as well as vote on their importance,
thereby lifting the verification burden off the authority. The system also needs to
strike a balance not to collect too much information.

– Worker reputation (trust). A worker’s reputation serves as one potential indicator
for data reliability, assuming that reputable workers are likely to provide mostly
accurate information. Subsequently, reports from workers with unknown or low
reputation need to undergo more thorough peer assessment. The system must sup-
port continuous adjustment of workers’ reputation.

– Adjustable and composable incentive scheme. An effective incentive scheme needs
to consider all past citizen actions, the current state of a report and the predicted
costs of processing a report manually in order to decide whether and how to stim-
ulate workers to provide additional information. It also needs to correctly identify
and punish undesirable and selfish behavior (e.g., false information, deliberate du-
plication of reports, intentional up/downgrading of reports).

3 For example, www.utest.com

www.utest.com
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The resulting complexity arising from the possible combination and configuration of
worker behavior, incentive schemes, and processing costs requires a detailed analysis
to identify a stable and predictable system configuration and its boundaries.

5 Modeling and Simulation Methodology

Our methodology for simulating worker participation and incentive mechanisms in
crowdsourcing processes is depicted in Figure 2. It consists of four basic steps, usually
performed in multiple iterations: i) defining a domain-specific meta-model by extending
a core meta-model; ii) capturing worker’s behavioral/participation patterns and reward
calculation into an executable model; iii) defining scenarios, assumptions, and config-
urations for individual simulation runs; and iv) evaluating and interpreting simulation
results. These steps are described in more detail below.

We use the DomainPro4 modeling and simulation tool suite in each of the outlined
methodology steps to design and instantiate executable models of incentive mechanisms
and run simulations of those models. The tool allows creating custom simulation lan-
guages through metamodeling and supports agent-based and discrete event simulation
semantics (see [3]). However, our overall approach is generic and can be easily applied
using a different modeling and simulation environment.

System-specifc 
Simulation 
Instance

Incentive-
specific Default 

SimulationModel
Incentive-centric 

Meta-Model

Simulation Core
Meta-Model

Simulation 
Model

Simulation 
Instance

Add Domain-Specific 
Extensions

Domain-specific 
Meta-Model

Define Simulation 
Behavior

Define Instances and 
Configuration

Simulation 
Results

Run and Observe 
Simulation

Refinement

DomainPro Designer 
(Language Design Mode )

DomainPro Designer 
(Model Design Mode ) DomainPro Analyst

Fig. 2. The methodology of simulation design and development

The simulation core meta-model is implemented in the DomainPro Modeling Lan-
guage. Optional extensions result in a domain-specific meta-model that defines which
component types, connector types, configuration parameters, and links a simulation
model may exhibit. In our case, we extend the core meta-model to obtain what we re-
fer to as incentive-centric meta-model (Section 5.1). The obtained incentive-centric
meta-model serves as the basis for defining the simulation behavior, i.e., the executable
simulation model (Section 5.2). Obtaining the executable simulation model requires
defining workers’ behavioral parameters, authority’s business logic (including incentive

4 www.quandarypeak.com. Open-source version forthcoming.

www.quandarypeak.com
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mechanisms and cost metrics), the environment and the control flow conditions between
them. Finally, prior to each execution, the executable simulation model requires a quick
runtime configuration in terms of the number of worker instances and monitored per-
formance metrics (Section 6.1). During the execution, we do near real-time monitoring
of metrics, and if necessary, perform simulation stepping and premature termination of
the simulation run to execute model refinements.

The tool we use enables refinement at any modeling phase. A designer will typically
start with simple meta- and simulation models to explore the basic system behavior. She
will subsequently refine the meta-model to add, for example, configuration parameters
and extend the functionality at the modeling level. This enables testing simple incentive
mechanisms first, and then extending and composing them once their idiosyncrasies are
well understood.

5.1 Incentive-Centric Meta-Model

The derived meta-model (Fig.3) reflects the conceptual view of incentive mechanisms
as presented in Section 3. A ParticipationPattern consists of Actors (Users or Providers)
and the InteractionObjects. Actors exhibit Behavior that encapsulates different UserAc-
tivities. InteractionObjects contain ObjActivities that define allowed and reward-yielding
activities on an InteractionObject. InternalSequences, ExternalSequence, and Object-
Sequence determine the control flow among activities by specifying trigger conditions.
The EnvGenerator drives the simulation by controlling the generation of interaction ob-
jects (artifacts) for the Workers to act upon, and for the Authority to check and further
process. The AtomicData within a SimulationElementType defines which data may be
passed between UserActivities and/or ObjActivities when an InternalSequence, Exter-
nalSequence, or ObjectSequence fires. While arbitrary data types can be passed along,
only AtomicData of type int, double, long, or boolean may be used as observable met-
rics during simulation execution. The exact applicable metrics are defined later on, on
the simulation instance level.

As previously outlined, the iterative nature of the modeling process usually requires
extending the core meta-model with domain-specific elements, as the need for them is
identified. The domain-specific extensions we introduce are highlighted in bold/blue in
Figure 3.

5.2 Simulation Model of the Real-World Scenario

In this section we derive an executable simulation model for evaluating the impact of
various design decisions taken during the modeling of the case-study scenario from
Section 4. Specifically, the goals of the simulation are:

i) prototyping and evaluating various incentive schemes;
ii) determining the impact of malicious user behavior;

iii) observing trends in processing costs, reward payments, report accuracy, and user
activities.
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Fig. 3. Simulation meta-model including domain specific extensions in bold/blue

Figure 4 provides a partial screenshot of the case-study simulation model.
The simulation model comprises over 40 simulation parameters, determining various

factors, such as: distribution of various personality characteristics in the worker popula-
tion, injected worker roles (e.g., malicious, lazy), base costs for the authority, selection
and composition of incentive mechanisms. Due to space limitations, describing them
all in detail/formally is not possible. Therefore, the rest of this section is written in a
narrative style.

Location and importance characterize a Situation. Situations can be generated with
user-determined time, location and importance distributions, allowing us to concentrate
more problematic (important) situations around a predefined location in selected time
intervals, if needed. For the purpose of this paper, we generate situations with uniform
probability across all the three dimensions. The SituationGenerator contains the activ-
ities for creating new situations and calculating phase-specific simulation metrics on
cost, reputation, points, actions, and importance across reports, situations and workers.

The Worker’s SetNextStep activity represents the implementation of the worker’s
decision-making function fa, introduced in Section 3. As previously explained, the
worker here considers the next action to perform based on: 1) internal state (e.g., loca-
tion), including innate, population-distributed personality characteristics (e.g, laziness,
isMalicious); 2) current performance metrics (e.g., reputation, points); 3) advertized
rewards (detectionReward, ratingReward, improvementReward).

Worker’s location determines his/her proximity to a situation, and, thus, the likeli-
hood to detect or act upon that situation (the smaller the distance, the higher the prob-
ability). However, two workers at the same distance from a situation will not equally
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Fig. 4. Partial screenshot of the implemented case-study simulation model in DomainPro De-
signer

likely act upon it. This depends on their personality, past behavior, and the number of
points they currently have.

Points and reputation are the principal two metrics by which the authority assesses
Workers in our scenario. In principle, points are used by the Authority as the main factor
to stimulate activity of a Worker. The more points, the less likely will a worker idle. On
the other hand, a higher reputation implies that the Worker will more likely produce
artifacts of higher quality. Each new worker joining the system starts with the same
default point and reputation values. Precisely how the two metrics are interpreted and
changed thereafter depends on the incentive mechanisms used (see below).

The four Behavior activities produce the respective artifacts – Reports, UpdateIn-
fos, RatingInfos and DuplicateInfos. Worker’s internal state determines the deviations
of accuracy, importance, improvement effect, and rating value of the newly created
artifacts. The subsequently triggered Report-located activities (CreatedR, ImprovedR,
RatedR and Detected) determine the worker action’s effect on the two metrics that rep-
resent the artifact’s state and data quality metrics at the same time – report accuracy
and importance. We use Bayes estimation to tackle the cold-start assessment of report
accuracy and importance, taking into account average values of existing reports and the
reputation of the worker itself.

The produced artifacts are queued at the Authority side for batch processing. In Pre-
Processing activity we determine whether a Report is ready for being processed. This
depends on the report’s quality metrics, which in turn depend on the amount and value
of worker-provided inputs.

Processing reports causes costs for the Authority. The primary cost factors are low
quality reports and undetected duplicate reports. Secondary costs arise when work-
ers focus their actions on unimportant reports while ignoring more important ones.
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Therefore, the Authority incentivizes the workers to submit required amounts of quality
artifacts. As noted in Section 4, gathering as much inexpensive data from the crowd as
possible was the original reason for the introduction of a crowdsourced process in the
first place.

Our proof-of-concept simulation model for the given scenario defines three basic
incentive mechanisms:

– IM1: Users are assigned fixed amounts of points per action, independent of the
artifact. Submitting yields most points.

– IM2: The amount of points is increased before assignment, depending on the cur-
rent quality metrics of the report. E.g., the fewer ratings or improvements the higher
the increment in points.

– IM3: Users are assigned a reputation. The reputation rises with accurately submit-
ted reports, useful report improvements, correctly rated importance and correctly
flagged duplicates.

As we shall see in Section 6.1, we can compose these three mechanisms in different
ways to produce different incentive schemes which we can run and compare.

Workers that behave differently than usual can be easily injected into the system for
simulation purposes by defining new roles and generating new workers or converting
existing workers to take up those roles. For demonstration purposes we define only a
single additional role - that of a malicious worker.

Malicious worker behavior is designed to cause maximum cost for the Authority. To
this end, we assume malicious workers to have a good perception of the actual situation
characteristics. Hence, upon submission they will set initial report importance low and
provide very inaccurate information subsequently. For important existing reports they
submit negative improvements (i.e., conflicting or irrelevant information) and rate them
low and while doing the opposite for unimportant reports.

6 Evaluation

For evaluating our approach, we keep using the case-study scenario from the previous
sections and perform a set of experiments on it. All provided experimental data is aver-
aged from multiple, identically configured simulation runs. Details on the experiment
setup are followed by experiment result5 presentation and gained insights.

6.1 Experiment Setup

Timing Aspects. We control the pace of the simulation by determining the amount of
situations created per phase. Taking a reading of all relevant (i.e., experiment-specific)
metrics at the end of each phase provides an insight on how these metrics change over
time. All our simulations last for 250 time units (t), consisting of 10 phases of 25t each.
Batch creation of situations is representative for real world environments such as bugs
that typically emerge upon a major software release or spikes in traffic impediments

5 Data available here: http://tinyurl.com/scekic-dorn-dustdar-coopis13

http://tinyurl.com/scekic-dorn-dustdar-coopis13
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coinciding with sudden weather changes. Report submission takes 5t, while improving,
rating, and duplication flagging require only 1t. The exact values are irrelevant as we
only need to express the fact that reporting requires considerably more time than the
other actions. Processing of worker-provided data on the provider side occurs every 1t.
Note here, that for the purpose of the case study, we are only interested in the generic
processing costs rather than the time it takes to process that data. Each report is assumed
to cause 10 cost units for zero-quality, and almost no cost when quality (through worker-
provided improvements) approaches 1.

Scenario-Specific Thresholds. As we aim for high-quality data and significant crowd-
base confirmation, the following thresholds need to be met before a report is considered
for processing: at least three updates and high accuracy (> 0.75); or five ratings and
medium importance (> 0.5); or four duplication alerts; or being reported by a worker
of high reputation (> 0.8) and having high importance (> 0.7). Workers obtain various
amounts of points for (correct) actions, the amount depending on the value of the action
to the provider and the incentive scheme used.

Worker Behavior Configuration. A worker’s base behavior is defined as 70% proba-
bility idling for 1t, 20% submitting or duplication reporting, and 10% rating or improv-
ing. Obtained points and reputation increase the likelihood to engage in an action rather
than idle. The base behavior represents rather active workers. We deliberately simulate
only the top-k most involved workers in a community as these have most impact on
benefits as well as on costs. Unless noted otherwise, k = 100 for all experiments.

Composite Incentive Schemes. The experiments utilize one or more of the following
three Composite Incentive Schemes – CIS, introduced in Section 5.2:

– CIS 1 = IM1

– CIS 2 = IM2 ◦ IM1 = IM2(IM1)
– CIS 3 = CIS 2 + IM3 = IM2 ◦ IM1 + IM3

CIS1 promises and pays a stable amount of points for all actions. CIS2 dynamically
adjusts assigned points based on the currently available worker-provided data, but at
least as high rewards as CIS1. CIS3 additionally introduces reputation calculation.

6.2 Experiments

Experiment 1: Comparing Composite Incentive Schemes. Here we compare the im-
pact of CIS1, CIS2, and CIS3 on costs, assigned rewards, report accuracy, and timely
processing. Figure 5 displays incurred costs across the simulation duration. All three
schemes prove suitable as they allow 100 workers to provide sufficient data to have
20 situations processed at equally high accuracy. They differ, however, significantly in
cost development (Fig.5 inset), primarily caused by undetected duplicate reports (on
average 0.2, 0.25, and 0.4 duplicates per report per phase for CIS1, CIS2, and CIS3,
respectively). CIS1 yields stable and overall lowest costs as the points paid induce just
the right level of activity to avoid workers getting too active and thus causing duplicates.
This is exactly the shortcoming of CIS2 which overpays workers that subsequently be-
come overly active. CIS3 pays even more, and additionally encourages worker activity
through reputation. The cost fluctuations are caused by the unpredictable number of
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Fig. 5. Incurred report processing costs for CIS1, CIS2, and CIS3. Inset: average paid points per
worker

duplicates (however remaining within bounds). Although more costly and less stable,
CIS3 is able to identify and subsequently mitigate malicious workers (see Experiment
3 below).

Experiment 2: The Effect of Worker/Situation Mismatch. Here we analyze the ef-
fects of having too few or too many workers per situation. In particular, we observe
per phase: the cost, points assigned, report importance (as reflecting situation impor-
tance), and reputation when: i) the active core community shrinks to 20 workers while
encountering 50 situations (20u/50s); ii) a balance of workers and situations (100u/25s);
iii) many active workers but only a few situations (100u/5s).

A surplus in situations (20u/50s) causes workers to become highly engaged, resulting
in rapid reputation rise (Fig 7 bottom) coupled with extremely high values of accumu-
lated rewarding points (Fig 6 inset). Costs per report remain low as duplicates become
less likely with many situations to select from (0.18 duplicates per report). Here, CIS3
promises more reward for already highly-rated reports to counteract the expected inabil-
ity to obtain sufficient worker input for all situation (on average 22 reports per phase out
of 50). Subsequently, the authority receives correct ratings for reports and can focus on
processing the most important ones. Compare the importance of addressed situations in
Figure 7 top. A surplus in active workers (100u/5s) suffers from the inverse effect. As
there is little to do, reputation and rewards grow very slowly. Perceiving little benefit,
workers may potentially leave while the authority has a difficult time distinguishing be-
tween malicious and non malicious workers. Configurations (100u/5s) and (100u/25s)
manage to provide reports for all situations, therefore having average report importance
remaining near 0.5, the average importance assigned across situations.
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Fig. 6. Costs per report incurred at various
combinations of worker and situation count

Fig. 7. Reputation acquired by workers (bot-
tom), and report importance addressed, re-
spectively remaining open (top)

Experiment 3: Effect of Malicious Workers. Here we evaluate the effects of an in-
creasing amount of malicious workers on cost when applying CIS3. Figures 8 and 9
detail cost and reputation for 0%, 20%, 30%, 40%, and 50% malicious workers. All
workers are considered of equal, medium reputation 0.5 upon simulation start. The
drop in costs across time (observed for all configurations) highlights that the mecha-
nism indeed learns to distinguish between regular, trustworthy workers and malicious
workers. The irregular occurrence of undetected duplicates cause the fluctuations in cost
apparent for 0% and 20% malicious workers. Beyond that, however, costs are primarily
determined by low accuracy induced by malicious workers. CIS3 appears to work ac-
ceptably well up to 20% malicious workers. Beyond this threshold harsher reputation
penalties and worker blocking (when dropping below a certain reputation value) need
to be put in place. In severe cases lowering the default reputation assessment might be
applicable but requires consideration of side effects (i.e., thereby increasing the entry
barrier for new workers).

6.3 Limitations and Discussion

Simulations of complex socio-technical processes such as the use-case presented here
can only cover particular aspects of interest, never all details. Thus any results in terms
of absolute numbers are unsuitable to be applied directly in a real-world systems. In-
stead, the simulation enables incentive scheme engineers to compare the impact of dif-
ferent design decisions and decide what trade-offs need to be made. The simulation
outcome provides an understanding what mechanisms might fail earlier, which strate-
gies behave more predictably, and which configurations result in a more robust system
design.

In particular, the presented comparison of CISs in Experiment 1 gives insight into the
impact of overpaying as well as indicating that the CIS3 would do well to additionally
include a mechanism to limit submissions and better reward the action of flagging the
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Fig. 8. Costs per report incurred due to various
level of malicious workers.

Fig. 9. Average reputation acquired by mali-
cious and non-malicious workers.

duplicates. Experiment 2 provides insights on the effect of having too few or too many
workers for a given number of situations. It highlights the need to adjust rewards and
reputation in reaction to shifts in the environment and/or worker community structure.
Experiment 3 provides insight into the cost development in the presence of malicious
worker and highlights the potential for mechanism extension.

True advantages of our simulation approach can be appreciated when used together
with an automated system for incentive management (e.g., [17]). The incentive man-
agement system can then be used to provide a number of simulation parameters, so that
the system architect can quickly set up a simulation environment resembling the real
system. The new incentive mechanisms and their combinations can then be tried out
and the feedback sent to the incentive management system which can then re-adjust its
incentive scheme setup.

7 Conclusion and Outlook

In this paper we presented a methodology for modeling and simulating incentives in
crowdsourcing environments, highlighting the challenges with which the system archi-
tects are faced, and pointing to a possible way of alleviating them. We intend to continue
our work on modeling incentives, trying to devise suitable models for different and more
complex processes and environments. In the long run, we intend to develop a uniform
and generally applicable language/notation for the description and ad-hoc instantiation
of various incentive processes on real-world socio-technical systems.
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