
CoMoT – A Platform-as-a-Service for Elasticity
in the Cloud

Hong-Linh Truong, Schahram Dustdar, Georgiana Copil, Alessio Gambi, Waldemar Hummer, Duc-Hung Le, Daniel Moldovan

Distributed Systems Group, Vienna University of Technology

E-mail: {truong, dustdar, e.copil, a.gambi, hummer, d.le, d.moldovan}@dsg.tuwien.ac.at

Abstract

Platform-as-a-Service (PaaS) should support the design, deployment, exe-
cution, test and monitoring of native elastic systems constructed from elastic
service units based on multi-dimensional elasticity requirements. In this paper,
we discuss fundamental building blocks for enabling multi-dimensional elas-
ticity programming of software-defined elastic systems. We describe CoMoT,
a novel PaaS for elasticity in the cloud that is developed based on these
fundamental building blocks.

1. Introduction

One of the main challenges for the development of (future)

platform-as-a-service (PaaS) is the question of how such

a PaaS will support native software-defined elastic systems

(SES), of which the functionality is constructed from cloud

service units and the elasticity capability is controlled via

software-defined APIs. Given the dynamics and diversity of

cloud service units, the entire lifecycle of SES, covering

design, coding, deployment, testing and execution activities,

should be supported by the PaaS. We believe that if cloud sys-

tems offer well-defined APIs, at different levels of abstraction,

for deploying service units (e.g., beyond the typical virtual

machine (VM) and static software deployment), for controlling

service units (e.g., adding/reconfiguring (new) Web containers

and VMs when needed), and for monitoring and analyzing

runtime quality and cost properties (e.g., of interdependent

Web services, Web containers and VMs), then different phases

of SES engineering, management, and execution will be inter-

woven. The user would, e.g., compose his/her SES consisting

of many service units and decide to deploy the SES based on

the requirement and the best cloud information he/she has,

while continuously testing and controlling the elasticity of

his/her SES to change the SES to meet the requirements and

to optimize the running costs and quality.

In this paper, we outline our novel PaaS aiming at support-

ing dynamic lifecycle development and execution of native

SES. The main driver of our PaaS is the concept of multi-

dimensional elasticity [1], in which a complex cloud system

will be elastic based on resource, cost, and quality associated

with service units of the system. This multi-dimensional

elasticity concept forces us to investigate a different way of

deploying, testing, controlling, and executing service units of a

SES based on the elasticity capabilities of itself and its execu-

tion environments. In this paper we outline our view on elastic

service units and their capabilities, and present fundamental

building blocks on the development of monitoring, control,

deployment, and testing for SES (Section 2). We outline how

these fundamental building blocks are integrated to provide

CoMoT for multi-dimensional elasticity programming in the

cloud (Section 3). We illustrate our current prototype (Sec-

tion 4). Finally, we briefly discuss related work (Section 5)

and future work (Section 6).

2. Fundamental Building Blocks for Multi-
dimensional Elasticity of Cloud Services

2.1. Conceptualizing Elastic Objects and Execution
Environments

At runtime, we view a cloud system as a set of elastic

objects that can be controlled. Elastic objects (e.g., a Web ser-

vice) and their execution environments (e.g., a Web container)

are described as elastic service units. An elastic service unit (i)

has a function, with well-defined interface, (ii) offers different

service models, such as provisioning, consumption, quality

management, and pricing, (iii) has dependent service units,

and (iv) has elasticity capabilities. Figure 1 presents general

information associated with an elastic service unit in the cloud.

We utilize them to model any type of software, hardware and

human resources offered by and built atop cloud systems that

can be used as fundamental service units in cloud services.

Fig. 1. Model of Elastic Service Units

Diverse types of elastic service units have different elasticity

2014 IEEE International Conference on Cloud Engineering

978-1-4799-3766-0/14 $31.00 © 2014 IEEE

DOI 10.1109/IC2E.2014.44

619

capabilities, e.g., increasing computational resources, reducing

cost, and increasing data accuracy. In our work, these capa-

bilities are explicitly modeled and can be programmed via

elasticity primitive operations which are mapped to concrete

APIs of specific cloud systems and services. Figure 2 illus-

trates the relationships among elasticity capabilities, types of

elastic service units, and cloud APIs.

Fig. 2. Elasticity primitive operations

2.2. Programming Software-defined Elastic Systems

Given the conceptual model of elastic service units, we

see that cloud service providers should offer their services

as elastic service units that facilitates PaaS to support the

development of native SES. Furthermore, any developer can

also provide his/her elastic service units. To support the

programming of SES, we capture available elastic service units

under ecosystems of elastic service units. An ecosystem will

include elastic service units, which have certain dependency

relationships. For example, an ecosystem can include cloud

services offered by a cloud provider or a set of service units

offered by different providers that can be employed together

in a single system. Regarding ecosystems, we can support

service unit composition and selection based on elasticity

requirements. Based on that, a new SES can be developed.

Besides elastic service units supporting required functionality

(such as computation, storage, or analytics), SES will also

include software-defined management APIs through which

the elasticity capabilities of SES and its service units can

be programmed at runtime. To represent such SES and their

requirements, we devise a model capturing the hierarchical

view of SES and its associated elasticity (see Figure 3).

2.3. Controlling Elasticity

For SES, we need to have a high-level view of elasticity

specifications that are suitable for the user but the elasticity

controller can support. Our general concept is to have a

high-level, directive-based language for specifying elasticity

named SYBL [2] that supports three fundamental features:

(i) specifying which elasticity metrics should be monitored,

(ii) establishing constraints on elasticity metrics, and (iii)

Fig. 3. Software-defined elastic systems

defining strategies for controlling elasticity. At runtime, we

utilize monitoring information and the structure of SES to

generate suitable elasticity control actions, each control action

is mapped to a set of suitable elasticity primitive operations.

Based on elasticity control actions, we can support diverse

tradeoffs of elasticity, for example, the user might just need

to specify the cost and quality constraints and the elasticity

controller will have to deal with both computational resources

and changes of SES service units to meet these constraints.

2.4. Monitoring and Analyzing Elasticity

Given the elasticity requirement from the user, we need

to monitor and analyze elasticity of SES at multiple lev-

els of abstraction, such as individual service units, a set

of service units structured into a logical topology, or the

whole SES. Furthermore, as elasticity is multi-dimensional,

we need to support different types of metrics. Therefore, we

develop concepts of elasticity space and elasticity pathway [3].

Elasticity space allows us to capture all relevant elasticity

metrics that are required by the user (specified in the user’s

elasticity requirement) when the SES is in an elastic mode

(e.g., increasing the quality due to the increasing paid costs).

Elasticity pathway allows us to determine how the elasticity

was evolved (based on historical elasticity space) as well as

how the elasticity would evolve (through the prediction based

on the evolution of elasticity space).

2.5. Deploying Software-defined Elastic Systems

Deploying SES will require the deployment of different

elastic service units at different levels of abstraction, such

as VM, executables, Web execution environment, and Web

services. Generally, we need to work on deployment of the

whole SES, topologies of SES and service units in SES. This

requires the deployment to integrate elasticity monitoring and

analysis features as well as to offer interfaces for elasticity

controllers and users to carry out certain elasticity operations,

such as deploying new VM and new service units.

2.6. Testing Software-defined Elastic Systems

Since SES will be deployed and executed in an elastic

manner, testing SES will require a fundamental change in

620

designing and executing tests. In our concept of testing elastic

systems [4], we see the need to have elasticity testing-as-a-

service which can generate test cases suitable for native SES

and deploy these test cases in multiple clouds to test the SES.

Furthermore, as controlling elasticity is an important issue

and part of SES, testing of SES should also test elasticity

controllers and monitors to find out if the elasticity capabilities

of SES can be properly programmed.

3. CoMoT – PaaS for Controlling, Monitoring,
and Testing Elasticity

Fig. 4. Overview architecture of CoMoT

Based on building blocks mentioned in Section 2, Figure 4

describes our CoMoT (Control, Monitoring, and Testing) that

implements elasticity programming, management and execu-

tion for SES. CoMoT is divided into three layers, namely

Tooling, CoMoT PaaS Core Services, and Multi-cloud Envi-
ronments.

• Tooling: includes different development and end-user

tools for software-defined service programming, deploy-

ment, monitoring and testing.

• Elastic PaaS Core Services: includes core services for

PaaS, such as Elastic Service Ecosystem and Recommen-
dation, Deployment Service, Elasticity Control, Elasticity
Monitoring and Analysis, and Elastic Test Service.

• Multi-cloud Environments: includes multiple cloud sys-

tems where the developed services will be deployed and

executed and where other components of CoMoT will be

deployed.

CoMoT PaaS Core Services can be used individually or in

combination. The core services also invoke each other. For

example, typically, the Deployment Service – called Salsa –

deploys not only SES and its service units but also elasticity

controllers and monitors, and then passes the deployment

information to the Elasticity Control – based on SYBL [2]

– which obtains elasticity monitoring information from the

Elasticity Monitoring and Analysis – based on MELA [3]

– to control the elasticity. However, in order to control the

elasticity, Elasticity Control can invoke Deployment Service
to deploy SES service units/topologies. Similarly, Elastic Test
Service can generate test cases and require the Deployment
Service to deploy test cases in multiple cloud systems. This

way of interactions among core services enables us to support

iterative, interactive and interwoven design, deployment, exe-

cution, monitoring and testing SESs, completely on the cloud.

4. Illustrating Example

We illustrate some aspects in our current prototype with

the development, deployment, and execution of a machine-

to-machine (M2M) Data-as-a-Service (DaaS) which includes

several service units for event processing, load balancing, and

NoSQL-based storage. Using our PaaS, a customer describes

his/her requirements and he/she uses our tool to iteratively

design the M2M DaaS. After this phase, the system will

present a SES design that the user can refine. The user also

annotates elasticity controls with the M2M DaaS using SYBL.

Based on that, we generate a TOSCA description [5] for the

M2M DaaS with elasticity requirements. This description is

sent to Salsa, which determines deployment strategies and

enriches the TOSCA with deployment information. Figure 5

presents a simple example of the enriched TOSCA with

elasticity requirements as well as deployment information.

Fig. 5. Examples of SES structure, deployment and
runtime description

Salsa deploys the M2M DaaS to multiple cloud environ-

ments. It also deploys other required units, if they have not

been deployed, such as SYBL for controlling elasticity and

MELA for monitoring elasticity. As the M2M DaaS is running,

621

Fig. 6. Elasticity space monitoring integrated with control, deployment and testing events/metrics

the user can observe elasticity metrics, such as shown in

Figure 6. Test cases can be defined and deployed to test

running service units. The results of testing and elastic metrics

from testing can also be shown using MELA.

5. Related Work

Several industrial and academic PaaS have been proposed,

developed and provided, such as Appistry CloudIQ [6], Ap-

prenda SaaSGrid [7], Boomi AtomSphere [8], Gigaspaces [9],

Google App Engine [10], Microsoft Azure [11], Parabon Fron-

tier [12]. On the one hand, we see many of them supporting

programming cloud services based on well-known application

models with little/without considering multi-dimensional elas-

ticity nature. Mostly they support resource elasticity. On the

other hand, we also observed PaaS, such as OpenTOSCA [13],

Azure’s Octopus Deploy [14] or ModaClouds [15], supporting

resource elasticity. In contrast to existing ones, our PaaS is

novel by focusing on programming, deployment, monitoring,

control, and testing based on multi-dimensional elasticity in

an integrated view.

6. Conclusions and Future Work

In this paper, we discuss issues that PaaS should support to

meet elasticity requirements of (future) native software-defined

elastic systems. We show that by conceptualizing elastic

service units with explicit elasticity capabilities programmed

via software-defined APIs, we can facilitate interwoven design,

deployment, testing, execution and control activities for elastic

cloud systems. We are currently carrying out our integration

and further development of these building blocks in CoMoT.

Acknowledgment: The work mentioned in this paper is

partially supported by the Pacific Control Cloud Computing

Lab and by the European Commission in terms of the CELAR

FP7 project (FP7-ICT-2011-8 #317790).

References

[1] S. Dustdar, Y. Guo, B. Satzger, and H. L. Truong, “Principles of elastic
processes,” IEEE Internet Computing, vol. 15, no. 5, pp. 66–71, 2011.

[2] G. Copil, D. Moldovan, H. L. Truong, and S. Dustdar, “Sybl: An
extensible language for controlling elasticity in cloud applications,” in
CCGRID. IEEE Computer Society, 2013, pp. 112–119.

[3] D. Moldovan, G. Copil, H.-L. Truong, and S. Dustdar, “Mela: Moni-
toring and analyzing elasticity of cloud services,” in International Con-
ference on Cloud Computing Technology and Science, ser. CloudCom,
2013, p. to appear.

[4] A. Gambi, W. Hummer, H.-L. Truong, and S. Dustdar, “Testing elastic
computing systems,” Internet Computing, IEEE, vol. 17, no. 6, pp. 76–
82, 2013.

[5] T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable cloud services
using tosca,” IEEE Internet Computing, vol. 16, no. 3, pp. 80–85, 2012.

[6] Appistry CloudIQ Platform, http://www.appistry.com/products.
[7] Apprenda SaaSGrid, http://apprenda.com/.
[8] Boomi AtomSphere, http://www.boomi.com/.
[9] GigaSpaces, http://www.gigaspaces.com/.

[10] Google App Engine, http://code.google.com/appengine/.
[11] Microsoft Azure Services Platform, http://www.microsoft.com/azure/

default.mspx.
[12] Parabon Frontier, http://www.parabon.com/.
[13] A. Nowak, T. Binz, U. Breitenbcher, F. Haupt, O. Kopp, F. Leymann,

and S. Wagner, “OpenTOSCA - A Runtime for TOSCA-based Cloud
Applications,” in Service-Oriented Computing, ser. Lecture Notes in
Computer Science, S. Basu, C. Pautasso, L. Zhang, and X. Fu, Eds.
Springer Berlin Heidelberg, 2013.

[14] “Azure’s octopus deploy, http://octopusdeploy.com.”
[15] E. D. Nitto, “Supporting the development and operation of multi-cloud

applications: The modaclouds approach,” in International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, ser.
SYNASC. IEEE, 2013.

622

