
Virtualizing Communication for Hybrid and
Diversity-Aware Collective Adaptive Systems

Philipp Zeppezauer, Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Austria
Email: {zeppezauer,oscekic,truong,dustdar}@dsg.tuwien.ac.at

Abstract. Hybrid and Diversity-Aware Collective Adaptive Systems
(HDA-CAS) form a broad class of highly distributed systems comprising
a number of heterogeneous human-based and machine-based computing
(service) units. These units collaborate in ad-hoc formed, dynamically-
adaptive collectives. The flexibility of these collectives makes them suit-
able for processing elaborate tasks, but at the same time, building a
system to support diverse communication types in such collectives is
challenging. In this paper, we address the fundamental communication
challenges for HDA-CAS. We present the design of a middleware for vir-
tualizing communication within and among collectives of diverse types of
service units. The middleware is able to handle numerous, intermittently
available, human and software-based service units, and manages the no-
tion of collectivity transparently to the programmer. A prototype imple-
mentation for validation purpose is also provided.

1 Introduction

Collective Adaptive System (CAS) [2] is an umbrella-term denoting distributed
systems comprised of multiple autonomous computing/service units with differ-
ent individual properties, but with the fundamental property of collectiveness.
Collectiveness implies that the individual units need to communicate and collab-
orate in order to reach common decisions, or perform tasks jointly. Adaptiveness
is another basic property of CASs, implying open systems where units may join
and leave, and dynamically alter collective compositions or task execution goals.
CASs come in a variety of forms. Hybrid and Diversity-Aware CASs (HDA-
CAS s) [1] additionally add the heterogeneity to the founding principles. This
means that they inherently support communication and collaboration among
different types of units, such as software, people and sensors.

Motivation. Let us consider a smart-city maintenance provider (MP)
– a company running a monitoring center covering thousands of sensors and
equipment systems geographically dispersed in numerous smart buildings (e.g.,
Galaxy1). The MP provides the centralized service of both predictive and cor-
rective maintenance to its customers (building/equipment owners/tenants). This
means that MP control centers actively monitor events originating from various

1 Pacific Controls Galaxy. http://www.pacific-galaxy.com/

2

sensors and perform Complex Event Processing on these data flows. If a potential
or actual malfunction is detected they dispatch collectives of experts to analyze
the situation in detail, and, if necessary, perform the physical maintenance work
on the ground. The (human) experts are contracted to work on-demand with
the MP, subject to their availability. Since each equipment manufacturer defines
different issue analysis and reparation procedures, when equipment from differ-
ent manufacturers is interconnected in a smart building, detecting the cause of
an anomaly event sequence cannot easily be done by following prescribed pro-
cedures. The complexity grows further when considered at the scale of a smart
city, with thousands of building, each with a unique equipment mix, age, en-
vironment, and agreed service-level. Therefore, such a scenario does not lend
itself well to a conventional workflow type of orchestration. Rather, collectives
of human experts perform loosely-controlled collaboration patterns (Section 2)
in order to detect and repair the problem in the most efficient way, considering
the particular context, and making use of supporting software tools when needed
(e.g., for data analysis, communication).

Contribution. In the described motivational scenario the MP needs a plat-
form to communicate with, deploy and orchestrate ad-hoc assembled, dynamic
teams of human-based and machine-based service units in order to execute, often
unpredictable, complex collaboration patterns. A HDA-CAS, as the one being
researched in SmartSociety project [3], can support these requirements. In this
paper, we present the design of one of the SmartSociety’s core components:
the virtualization and communication middleware – SmartCom, providing the
communication and virtualization primitives to support heterogeneity, collectiv-
ity and adaptiveness. SmartCom is actually an independent component usable
with a wide number of HDA-CAS platforms. SmartCom fulfils the following
characteristic of most service buses: a) Heterogeneity – supporting various
types of communications channels (protocols) between the platform and service
units as well as among service units/collectives, transparently to the HDA-CAS
platform user. b) Communication – providing primitives for: message transfor-
mation, routing, delivery with configurable options (e.g., retries, expiry, delayed,
acknowledged). c) Persistence – message persistence and querying. d) Security
– Handling authentication and encryption, as well as preventing message flood-
ing. e) Scalability – ability to handle large number of intermittently available
service units.

In addition to these features, the distinguishing novelty of SmartCom is
its native support for virtualizing collectives: i) SmartCom hides the com-
plexity of communication with a dynamic collective as a whole and passing of
instructions from the HDA-CAS execution engine to it, making it a first-class,
programmable entity; ii) Communication with the collective members is trans-
parent to the HDA-CAS, regardless of whether they are human or machine-
based, with SmartCom interpreting the messages for the human-based service
units; iii) A single human, sensor or software service endpoint can participate in
different collectives concurrently, acting as a different service unit with different
SLA, delivery and privacy policies. These novel properties make SmartCom

3

especially suitable for supporting scenarios such as predictive maintenance. To
the best of our knowledge, no other platforms or middleware systems offer the
collective virtualization in a similar manner.

SmartSociety Platform (HDA-CAS)

SmartSociety
Applications

App1
module

App2
module

App3
module

Compiler
SM

A
R

TC
O

M
 M

id
d

le
w

ar
e

AppN
module

Sm
ar

tS
o

ci
et

y
A

PI
s

 Provenance

 Orchestration

 Elasticity

 Incentives

 etc.

°°°

developers

users

SU

Human Peer

SU

Machine Peer
(e.g. Web Service)

SU

Human Peer

E.g., Smart City
Maintenance

Provider

User App A

User App B

 context

Execution Context

Incentives

QoS

Communication

or

or

Service Unit (SU)

Fig. 1. Operational context for the SmartCom middleware. Middleware components
are marked with thick lines.

Paper Organization. In the following section we present the operational
context of the SmartCom middleware. In Section 3 we present SmartCom’s
architecture and design choices. In Section 4 we describe the implementation
and illustrates a realistic use-case. Section 5 presents the related work. Section 6
concludes the paper.

2 Operational Context of Collective Communication

Figure 1 shows the high-level architecture of the SmartSociety platform and
presents SmartCom’s operational context. SmartSociety platform supports ‘pro-
gramming’ and execution of hybrid human-computer ‘computations’. These com-
putations consist of different general-purpose tasks being submitted to the plat-
form for execution. More precisely, the platform users (e.g., a smart-city main-
tenance provider) submit complex tasks to a SmartSociety application running
on the platform. The application performs the task by assembling and engaging
collectives of service units to execute the (sub-)tasks collaboratively.

The service unit (SU) is an entity provisioned and utilized through service
models (e.g., on-demand and pay-per-use use), as described in [15]. An SU con-
sists of: i) Peer – a human, a machine, or a thing (e.g., a sensor) performing

4

the computation or executing a task; ii) Context – a set of parameters describ-
ing the execution context of the particular HDA-CAS application in which the
SU is participating. The context parameters can include: execution ID, QoS
requirements, performance metrics, associated incentives. To describe the com-
munication with a SU, the context comprises the Communication Context part
which defines the context-dependent communication and virtualization channels
(e.g., using email, SMS). The SU can use different communication channels to
interact with SmartCom, e.g., a human-based SU can communicate with the
platform via email and Twitter interchangeably, receive task descriptions and
track progress through a web application, and communicate with other SUs
within the collective through a dedicated mobile app. Human-based SUs can
make use of software-based SUs in the collective, serving as collaborative and
utility tools. For example, a software service like Doodle can be used to agree
upon participation times, Dropbox as a common repository for performed tasks,
or Splunk for data analytics.

Both humans and machines can drive the task processing—e.g., a software
may invoke workflow activities which are performed by human-based service
units; or, conversely, human-based service units can orchestrate the execution
independently, using software services as data analytics, collaboration and co-
ordination tools. How exactly a task is processed is effectively controlled by the
SmartSociety application. As an important design principle of the SmartSociety
platform is to achieve ‘smartness’ by leveraging human intelligence and capabil-
ities whenever possible, the applications try to minimize the use of conventional
workflows to describe the task processing, and rely primarily on the use of collab-
oration patterns. A collaboration pattern governs the effort within a collective in
a loose manner; rather than over-regulating humans, the collaboration patterns
set the limits within which the service units are allowed to self-organize, using
familiar collaboration tools and environments.

A collaboration pattern consists of the following elements: 1) Relation-
ship topology – specifying different topologies (e.g., independent, tree, ring, sink,
random) and relation types formalizing relationships among service units in a
collective. The meaning of the relations is application specific, and can be used
to express communication/data/command flow. 2) Collaboration environment
– specifying access to familiar external tools that the service units can use to
collaborate among themselves (e.g., Google Docs, Dropbox). When a collective
is formed, service units are provided with instructions and appropriate access
credentials for the previously set up collaboration environment. 3) Commu-
nication channels – analogously to the collaboration environment, the pattern
should specify access to familiar external tools that the service units can use to
communicate among themselves and with SmartSociety Platform. 4) Elasticity
policies – definitions of metrics to be monitored and algorithms for collective
composition and adaptation. 5) Security and privacy policies – policies to re-
strict communication to specific (sub-)collective or to predefined communication
channels.

5

SMARTCOM
Peer Adapters

Human

Software

Mobile App

Human

FTP

Feedback
Adapters

Communication Engine

Messaging and Routing Manager

Adapter Manager

Message Info
Service

HDA-CAS
Platform

(e.g., Smart
Society)

App1

App2

App3

Adapter
Execution

Engine

Adapter
Handler

Address
Resolver

Message
Handler

Routing
Rule

Engine

Feedback
Handler

Message Query
Service

Mail
Adapter

MobileApp
Adapter

Email

REST
Adapter

Email

<<REST>>

Dropbox
Adapter

FTP
Adapter

Mailinglist
Adapter

Dropbox

Collective
#1

M
es

sa
ge

 B
ro

ke
r

Fig. 2. Simplified architecture of the SmartCom middleware.

3 Middleware Design and Architecture

Figure 2 shows the conceptual architecture of the SmartCom middleware. The
HDA-CAS Platform components (e.g., executing application modules) pass the
messages intended for collectives to the Communication Engine through a pub-
lic API. The task of the Communication Engine is to effectively virtualize the
notions of ‘collective’ and ‘service unit (SU)’ for the HDA-CAS platform. This
means that the communication with different service units and collectives has
to be handled transparently to the HDA-CAS platform, independent of unit’s
actual type and availability. In the following sections, for brevity, when referring
to the communicational aspect of SU’s functionality we will use the short term
“peer” denoting the computing human/machine element within the SU that is
the sender or receiver of information/data; and the term “adapter” denoting the
middleware component in charge of handling the communication.

Messaging and Routing. All communication between the peers and the
platform is handled asynchronously using normalized messages. A queue-based
Message Broker is used to decouple the execution of SmartCom’s components
and the communication with peers. SmartCom supports unicast as well as
multicast messages. Therefore, multiple peers can also be addressed as collectives
and the SmartCom will take care of sending the message to every single member
of the collective.

The Messaging and Routing Manager (MRM) is SmartCom’s principal en-
try point for HDA-CASs. It consists of the following components: 1. The Message
Handler takes incoming messages from HDA-CAS and transforms them into an
internal representation. If the receiver of the message is a collective, it resolves
the current member peers, and their preferred communication channels; 2. The

6

Routing Rule Engine then determines the proper route to the peers, invoking
the Adapter Manager to instantiate appropriate adapters in order to complete
the route, if needed (see below); 3. The Feedback Handler waits for feedback
messages received through feedback adapters and passes them to the Message
Handler. Afterwards they will be handled like normal messages again, and re-
routed where needed, e.g., back to the HDA-CAS. A route may include different
communication channels as delivery start-/endpoints. Figure 3 shows the con-
ceptual overview of SmartCom’s routing. For each message the route will be
determined by the Routing Rule Engine using the pipes-and-filters pattern, de-
termining the route based on the message properties: receiver ID, message type
and message subtype, with decreasing priority. Note that there may be multiple
routes per message (e.g., a single peer can be contacted using a mobile app,
email and SMS concurrently).

Pa P1

Pa

P2

Fa

HDA-CAS

P3

Fa

Routing Engine

Dropbox

Sensor

FaP4

P5

Fig. 3. Messages are routed to Peer Adapters (Pa) which forward the messages to the
corresponding Peers (P1 to P5). Feedback is sent back by human peers, software peers
(e.g., Dropbox) and sensors using Feedback Adapters (Fa). The HDA-CAS Platform
can also send and receive messages.

Adapters. In order to use a specific communication channel, an associated
adapter needs to be instantiated. The communication between peers and the
adapters is unidirectional — peer adapters are used to send messages to the
peers; feedback adapters are used to receive messages from peers. SmartCom
originally provides some common peer/feedback adapters (e.g., SMTP/POP,
Dropbox, Twitter). In addition, being developed in the context of a research
project, it also provides adapters for dedicated SmartSociety Android/Web peer
apps. The role of adapters should be considered from the following two perspec-
tives: 1) functional; and 2) technical.

Functionally, the adapters allow for: a) Hybridity – by enabling different
communication channels to and from peers; b) Scalability – by enabling Smart-
Com to cater to the dynamically changing number of peers; c) Extensibility –
new types of communication and collaboration channels can easily be added at
a later stage transparently to the rest of the HDA-CAS platform. d) Usability
– human peers are not forced to use dedicated applications for collaboration,
but rather freely communicate and (self-)organize among themselves by relying
on familiar third-party tools. e) Load Reduction and Resilience – by requiring
that all the feedback goes exclusively and unidirectionally through external tools
first, only to be channelled/filtered later through a dedicated feedback adapter,

7

the SmartCom is effectively shielded from unwanted traffic load, delegating the
initial traffic impact to the infrastructure of the external tools. At the same
time, failure of a single adapter will not affect the overall functioning of the
middleware.

Technically, the primary role of adapters is to perform the message format
transformation. Optional functionalities include: message filtering, aggregation,
encryption, acknowledging and delayed delivery. Similarly, the adapters are used
to interface SmartCom with external software services, allowing the virtualiza-
tion on third party tools as common software peers. The Adapter Manager is
the component responsible for managing the adapter lifecycle (i.e., creation, ex-
ecution and deletion of instances), elastically adjusting the number of active
instances from a pool of available adapters. This allows scaling the number of
active adapter instances out as needed. This is especially important when deal-
ing with human peers, due to their inherent periodicity, frequent instability and
unavailability, as well as for managing a large number of connected devices, such
as sensors. The Adapter Manager consists of following subcomponents:

• Adapter Handler : managing adapter instance lifecycle. It handles the follow-
ing adapter types: i) Stateful peer adapters – peer adapters that maintain
conversation state (e.g., login information). For each peer a new instance of
the adapter will be created; ii) Stateless peer adapters – peer adapters that
maintain no state. An instance of an adapter can send messages to multiple
peers; iii) Feedback pull adapters – adapters that actively poll software peers
for feedback. They are created on demand by applications running on the
HDA-CAS platform and will check regularly for feedback on a given commu-
nication channel (e.g., check if a file is present on an FTP server); iv) Feedback
push adapters – adapters that wait for feedback from peers.

• Adapter Execution Engine: executing the active adapters.
• Address Resolver : mapping adapter instances with peers’ external identifiers

(e.g., Skype/Twitter username) in order to initiate the communication.

Feedback messages from peers (e.g., subtask results) or external tools (e.g., Drop-
box file added, email received on a mailing list) are consumed by the adapters
either by a push notification or by pulling in regular intervals (more details
in Section 4). Due to space constraints, a detailed description of the described
architectural components and their implementation, as well as the full API spec-
ification is provided in the supplement materials2.

Other Functionalities. All sent and received messages as well as internal
messages are persisted in a NoSQL database. Stored messages can be queried
and analyzed through the MessageQuery public API (e.g., to derive metrics
or identify conditions for applying incentives). Since messages can be of arbi-
trary subtype and contain an arbitrary payload, human peers (and their local
third-party applications) might not know how to interpret the message. The
MessageInfoService provides: a) The semantic meaning/description of message
type and contents in a human-readable way; b) Dependencies to other messages;

2 https://github.com/tuwiendsg/SmartCom/wiki

8

c) Timing constraints (e.g., expiry, priority). This is especially useful when sup-
porting complex task acceptance negotiations, where human peers are required
to fully understand the message meaning and send back valid answers. Currently,
the service annotates the message field types, provides a natural-language de-
scription of the expected fields contents and provides a state-machine description
describing the allowed message exchange sequence with respect to dependency
and timing constraints. The MessageInfoService can also be extended to provide
an ontology of message types enabling machine-readable message descriptions,
and use of personal software agents searching for tasks and participating in ne-
gotiations on behalf of human peers [16].

SmartCom supports specifying and observing delivery and privacy policies
on message, peer and collective level: Delivery policies stipulate how to interpret
and react to possible communication exceptions, such as: failed, timed out, un-
acknowledged or repeated delivery. Privacy policies restrict sending or receiving
messages or private data to/from other peers, collectives or HDA-CAS appli-
cations under different circumstances. Apart from offering predefined policies,
SmartCom also allows the users to import custom, application- or peer-specific
policies. As noted, both types of policies can be specified at different levels.
For example, a peer may specify that he can be reached only by peer ‘man-
ager’ via communication channel ‘email’, from 9am to 5pm in collective ‘Work’.
The same person can set to be reachable via ‘SMS’ any time by all collective
members except ‘manager’ in collective ‘Bowling’. Similarly, a HDA-CAS plat-
form application could specify the collective delivery policy stating that when
sending instructions to a collective it suffices that the delivery to a single mem-
ber succeeds to consider the overall delivery successful on the collective level.
SmartCom takes care of combining and enforcing these policies transparently
to the HDA-CAS user in different collective contexts.

Peer authentication is handled externally. Before instantiating the corre-
sponding adapter, SmartCom requires the peers to authenticate with the exter-
nal tool and obtains from the tool the token that is used to authenticate messages
from/to the peer. More information is provided in the supplement materials.

4 Implementation & Illustrative Example

SmartCom prototype was implemented in the Java programming language and
can be used directly by HDA-CAS platforms running on the Java Virtual Ma-
chine. Additionally, other platforms can interact with SmartCom using the
set of provided APIs. The prototype comes with some implemented standard
adapters (e.g., Email, Twitter, Dropbox) that can be used to test, evaluate and
operate the system. Additional third-party adapters can be loaded as plug-ins
and instantiated when needed. SmartCom uses MongoDB3 as a database sys-
tem for its various subsystems. Depending on the usage of the middleware, either
an in-memory or dedicated database instances of MongoDB can be used. To de-
couple the execution of the HDA-CAS platform and the communication we use

3 http://www.mongodb.org

9

Apache ActiveMQ4 as the message broker. The source code, as well as runnable
integration tests showcasing the usage and functioning of the middleware can
be found in SmartCom’s GitHub repository5. The various subsystems and the
whole system can be built using Maven. The APIs are provided in the api mod-
ule. Additional documentation regarding the design, implementation and usage
is provided on the repository’s Wiki page.

Based on the motivating scenario presented in Section 1 we formulate a con-
crete use-case to validate the presented design and its fulfilment of the stated
requirements: A predictive maintenance SmartSociety application receives sensor
readings from a smart building and performs Complex Event Processing (CEP)
on them. If an indication of a potential malfunction is detected, further inves-
tigation is required. A collective (COL1) of available human experts is formed6

and a collaborative pattern imposed (Section 2). The application appoints an ex-
pert to lead the peer collaboration within the collective and sets up a Dropbox
repository for sharing the findings and equipment logs between the SmartSociety
application and the collective. Additionally, it provides to the COL1 manager
the contact details of the manufacturer of the malfunctioning equipments in case
additional consultations are required. Finally, SmartCom also provides COL1
peers with mediated access to a data analysis tool (e.g., Splunk7).

SmartSociety
Application

COL1

Experts

Dropbox

repository

Pa

Pa

Fa

contact
1° event

5° analysis result

2° log

Sensors

CEP

Business
Logic

COL2

Pa

Fa

3° data

4° analysis result

manufacturer

Fig. 4. Supporting predictive maintenance use-case. Collectives of human expert and
software service units participate in a joint collaboration to identify the cause of a
detected malfunction event.

Figure 4 shows the two collectives participating in this scenario. COL1 con-
taining human expert service units (SUs) and a single software SU — the Drop-
box service. Furthermore, each human SU is assigned a dedicated peer adapter
(Pa) instance, while for the Dropbox service, both a Pa and a feedback adapter

4 http://activemq.apache.org
5 https://github.com/tuwiendsg/SmartCom
6 Selection of collective peers is out of scope of this paper.
7 www.splunk.com

10

(Fa) instance are executed, in order to support two-way communication with
the SmartSociety platform. COL2 contains a single SU that does data analysis.
To support two-way communication we introduce again a Pa and a Fa.

The use-case starts by SmartSociety application notifying peers that their
participation is needed (Fig. 4, 1◦) by sending a message to MessagingAndRout-

ingManager which will initialize the routing. Some peers expressed in their pro-
files the preference for being notified by SMS, others by email. To send an SMS
MessagingAndRoutingManager reads the phone number of a peer from its pro-
file and hands it to AdapterManager which instantiates and executes the SMS
adapter. PeerAdapter sends the message by using the most cost-efficient mobile
operator. Those peers that prefer to be contacted through email will be sent
an email using a stateless email adapter through an external mail service. This
preference can be set using DeliveryPolicy. The contents of the message are
provided by the SmartSociety application. In this case, the message contains
the URL pointing to the description of the detected event, Dropbox repository
URL and access tokens for sharing the results, the name and contact details of
the selected collective manager as well as a natural language description of the
required activities and contractual terms. Furthermore, the manager is sent the
contact details of the equipment manufacturer’s customer service, and the ad-
dress of another collective – COL2, which in practice contains a single software
peer, the Splunk service.

For the sake of simplicity, we assume that expert peers do accept the terms
and participate in COL1. The manager freely organizes the collaboration in
COL1. At a certain point, human peers need to run an additional data analy-
sis on the log. The collaboration pattern foresees that if a file with predefined
filename is deposited in the shared Dropbox repository, the dedicated feedback
adapter would pick up that file (2◦) and forward it to the COL2 for analy-
sis. The middleware ensures that FeedbackPullAdapter for Dropbox (Drop-

boxFeedbackAdapter) regularly checks if there are new files available (e.g., once
a minute). The system will then create and send a message to the Splunk Peer
Adapter which contains the location of the file and further information on the
analysis (3◦). Once Splunk has finished analyzing the data, Splunk will deposit
the results file back to the Dropbox repository (4◦ + 5◦) and its Feedback-

PushAdapter will push a multicast notification message to the COL1 members
(1◦ again). The COL1 can then continue their work.

5 Related Work

SmartCom encompasses different design choices that, taken individually, can
be compared with existing solutions. However, to the best of our knowledge, no
existing system incorporates a similar set of functionalities as the one Smart-
Com offers to support an effective virtualization of communication for dynamic,
hybrid human-machine collectives.

Popular Open-Source and proprietary Enterprise Service Buses and Integra-
tion Technologies provide the same support and flexibility for custom adapters

11

as SmartCom does. On the other hand, many ESBs lack the support of multi-
tenancy (e.g., Apache ServiceMix [6] and JBossESB [5]) or do have restrictions
on implementing custom adapters (e.g., JBossESB [5]). Others do not support
the dynamical enforcement of policies (e.g., WSO2 ESB [7]) and there is in gen-
eral no support of the addressing of collectives at all which is one of the key
features of SmartCom. Furthermore the support of humans interacting with
the system is generally not considered.

Service-oriented CASs usually involve addressing peers as Web Services, lack-
ing the ability to communicate with peers using different communication chan-
nels, especially external tools. For example, the ALLOW Ensembles project [8]
concentrates on the concept of cell ensembles, which consist of cells that have
a defined behaviour. They use BPEL4Chor [9] for the communication between
cells, which allows communication between web services. The ASCENS project
focuses on the peer-to-peer approach where some peers of the system know at
least some other peers in the system [10]. They use Pastry [11] and extend
it with the SCRIBE protocol [12] to support any- and multi-casts. As previ-
ously shown, this behavior differs from ours, in that we do not support anycast,
but multicast specifically within collective boundaries. In [4], authors propose a
middleware that supports communication among agents on different platforms
and programming languages. They use a different runtime for each platform and
exchange messages between those runtimes to achieve a cross-platform commu-
nication of agents. Compared to our approach it focuses on the peer-to-peer
interaction instead of the interaction of the system with peers. The intention of
the middleware is to exchange the messages between the runtime systems com-
pared to direct message exchange with peers in our approach. Social Computing
platforms like Jabberwocky [13] or TurKit [14] utilize human capabilities to solve
problems. However, they rely on existing crowdsourcing platforms and rely on
their communication model that does not supporting collectives at all.

6 Conclusions and Future Work

In this paper we presented SmartCom – a middleware aiming to tackle hybrid-
ity in a variety of aspects, including different kinds of supported computations
(human- vs. machine-based service units), different channels of communication,
and loose-coupling to promote use of familiar third-party services. This is of
high importance in order to create a platform which is able to scale to a po-
tentially high number of service units organized in multiple dynamic collectives.
SmartCom allows addressing collectives of service units transparently to the
HDA-CAS, relieving the HDA-CAS programmer the duty to keep track of cur-
rent members of a collective, allowing the collective to scale up and down when
needed seamlessly. The described design was validated through a prototype im-
plementation provided as open-source. The focus of our future research will be
on modelling the primitives for integrated monitoring and execution of elasticity
actions, such as imposing of optimal topologies, dynamical adjustment of col-
lective members, and support for incentive application. Currently, these actions

12

have to be fully specified on the HDA-CAS (SmartSociety) application level,
presenting an unnecessary burden for the developers.

Acknowledgment: This work is supported by the EU FP7 SmartSociety
project under grant No 600854.

References

1. F. Giunchiglia, V. Maltese, S. Anderson, and D. Miorandi. To-
wards Hybrid and Diversity-Aware Collective Adaptive Systems, 2013.
http://eprints.biblio.unitn.it/4214/

2. S. Anderson et al. FoCAS Book: Adaptive Collective Systems Herding Black Sheep,
Open publication, ISBN pending, 2013. http://focas.eu/documents/adaptive-
collective-systems.pdf

3. D. Miorandi, V. Maltese, M. Rovatsos, A. Nijholt, and J. Stewart. Social Collective
Intelligence: Combining the Powers of Humans and Machines to Build a Smarter
Society, ISBN 978-3-319-08680-4, Springer, 2014.

4. G. Cabri, E. Domnori, and D. Orlandini. Implementing Agent Interoperability be-
tween Language-Heterogeneous Platforms, 20th IEEE Int. Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pp. 29–34, Paris, 2011.

5. JBossESB. http://jbossesb.jboss.org/.
6. Apache ServiceMix. http://servicemix.apache.org.
7. WSO2 ESB. http://wso2.com/.
8. A. V. Andrikopoulos, A. Bucchiarone, S. Gomez Saez, D. Karastoyanova, and C.

Antares Mezzina. Towards Modelling and Execution of Collective Adaptive Systems.
Service-Oriented ComputingICSOC 2013 Workshops. Springer, pp. 69–81, 2014.

9. G. Decker, O. Kopp, F. Leymann, and M. Weske BPEL4Chor: Extending BPEL for
Modeling Choreographies. IEEE Int. Conference on Web Services 2007, pp. 296–303,
IEEE, 2007.

10. P. Mayer, A. Klarl, R. Hennicker, M. Puviani, F. Tiezzi, R. Pugliese, J. Keznikl,
and T. Bures. The Autonomic Cloud: A Vision of Voluntary, Peer-2-Peer Cloud
Computing. IEEE 7th Int. Conference on Self-Adaptation and Self-Organizing Sys-
tems Workshops, pp. 89–94, IEEE, 2013.

11. A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. Middleware 2001, Springer, 2001.

12. M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. Rowstron, Scribe: A large-
scale and decentralized application-level multicast infrastructure. IEEE J. on Selected
Areas in Communications 20(8), pp. 1489–1499, 2002.

13. S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar. 2011. The jabberwocky pro-
gramming environment for structured social computing. Proc. 24th annual ACM
symposium on User interface software and technology. ACM, 2011.

14. G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. Turkit: tools for iterative
tasks on mechanical turk. Proc. ACM SIGKDD workshop on human computation,
pp. 29–30, 2009.

15. H.-L. Truong, S. Dustdar, and K. Bhattacharya. Conceptualizing and Programming
Hybrid Services in the Could. Intl. J. of Cooperative Information Systems 22(4),
2013.

16. Y. Gal, S. Kraus, M. Gelfand, H. Khashan, and E. Salmon. An Adaptive Agent for
Negotiating with People in Different Cultures. ACM Tran. on Intelligent Systems
and Technology 3(1), ACM, 2011.

