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Abstract—With the advance of research in human computa-
tion, applications and software systems are increasingly being de-
signed to include the human aspect of computation. We work with
Social Compute Units (SCUs) that are computational constructs
with people as their core resources who use software services to
organize and conduct their work. SCUs are collaborative units,
and have a cloud-like behavior in the sense that they are elastically
provisioned and adapted at runtime. Systems that utilize the
concept of SCUs bring challenges that are associated with the
highly dynamic and unpredictable human-centric behavior. Thus,
trust in human based services is of paramount importance. While
there is related work on social trust in the social networking
and crowdsourcing areas, trust in highly coordinated constructs
such as SCUs remains a significant challenge. In this paper
we provide a trust model that considers merging social trust
with performance based trust of human based services into an
integrated trust model. We illustrate the models’ application in
concrete strategies, such as for elastic management of SCUs and
incentives for SCU members.

I. INTRODUCTION
Complex collective adaptive systems (CASs) that are on the

rise in the recent years, offer new ways of resource utilization
and promise novel complex applications that ease and smarten
the way societies function [18]. However, they also create new
challenges in dealing with the plethora of resource types and
services that they are comprised of. Social Compute Units
(SCUs) [4] represent a form of collective adaptive systems that
consist of services provided by humans as compute resources.
A crucial factor for the existence of SCUs are today’s human
context-based profile and performance managing platforms,
from which people can be recruited to be utilized as compute
resources. By this we mean platforms such as crowdsourcing
ones, social-networks, expert-network platforms, and enter-
prise pools of human resource profiles. Moreover, as already
discussed in [5], today it is feasible to model and utilize
human-based task execution under the service oriented model
via human-based services, and to manage these services in a
programmatic way.

SCUs are formed to reach a certain task-oriented goal, with
a specific quality and in a specific domain. In our work and
throughout this paper, we use the term Individual Compute
Units (ICU) for members of an SCU, i.e., people that can
expose their skills and the results of their work as services. The
purpose of the SCU or the domain of the task to be executed,
is what gives context to the social relationships of its members.
We work with SCUs because they are designed as solutions
for applications and processes that require executing highly-
complex tasks that can be accurately solved only with human-
in-the-loop approach. As opposed to simple crowdsourcing
tasks that require individual work, SCUs address complex tasks
that may be interdependent and that require highly coordinated
team-work that needs to be automatically managed, with

high responsiveness to events during runtime such that the
performance and quality of task results can be kept at their
required level. SCUs are formed on customer request with
specific requirements, and they dissolve when all tasks are
successfully executed. Thus, they bring challenges that are
associated with the highly dynamic and unpredictable human-
centric behavior. Trust is one of these challenges. Selecting not
only the appropriate members according to specific require-
ments but also the best among the available ones is important
for forming an effective SCU.

For social networks and crowdsourcing platforms it is
already identified that trust is important in deciding with whom
to establish connections and with whom to interact [23], [8],
[2]. We stress that this importance is even higher in SCUs
because they entail complex, structures and organized work.
In previous work [16] we have argued that ICUs should
be managed elastically for optimal SCU performance and
customer cost savings. This implies that ICUs can be added and
removed from the SCU at runtime based on different strategies,
so that the SCU capabilities and performance are optimized
at any time and for any changes in customer requirements.
Hence, as much as trust is needed at the stage of the formation
or selection of SCUs, it also plays a crucial role during
their lifecycle for runtime adaptation, i.e., for managing SCU
execution and thus controlling the level of non-functional
parameters and quality of the returned results.

As far as we know, online social trust in the context of
Human Computation [15] is only explicitly investigated in
the context of social networks such as in [23] and [7], the
Crowdsourcing context [2], as well as in human-enhanced
service oriented environments on individual worker-basis [17].
However, there is no trust investigation based on metrics
relevant for task-executing elastic collectives of human based
services such as SCUs, although there is some work on trust in
virtual teams (e.g., [10]). Nevertheless, SCUs are much more
complex formations than those of online teams. In terms of
their controlling, coordination, communication, task execution
and management, SCUs can be composed and controlled
automatically. To be able to utilize trust as an indicator of
efficient collaborations, in this paper we propose a trust model
for SCUs as well as for their individual members, we analyze
how metrics used within elastic algorithms for adaptation of
SCUs affect member trust within SCUs and in the general
network to which the member belongs, and make a correlation
between member-trust within SCUs on one side and the trust
on SCUs from clients on the other. Thus, the key contributions
of this work are:
• a socio-technical trust model for SCUs
• elasticity algorithm with trust-updates
• a novel incentive strategy for ICUs (SCU members),

based on our trust model



The remainder of this paper is organized as follows. In Section
II we give further motivation for our work and continue with
preliminaries for our model in Section III. In Section IV we
present our model of ICU and SCU trust. In Section V we
describe the application of the model in different strategies,
while in Section VI we evaluate a proposed trust-based elastic
adaptation strategy. We discuss related work in Section VII,
and conclude the paper in Section VIII.

II. SCU FUNDAMENTALS, MOTIVATION AND
CHALLENGES

A. SCU Fundamentals
SCUs are virtual units of multiple expert human-based re-

sources that use software services for executing complex tasks.
They are formed on customers’ request and with customer-set
constraints, such as those for the skills and price of the human
resources for specific tasks. However, they can also be formed
voluntarily and in an ad-hoc way for a specific purpose. Thus,
the nature of SCUs is task-oriented for completing a goal,
where tasks might come from customers but also generated
by the SCU members during SCU execution, i.e., at runtime.
In addition, an SCU is elastic but it is so as much as the
platform provisioning it allows. In [16] we have discussed
SCUs runtime execution, its elastic properties and presented
elasticity management strategies that SCU provisioning plat-
forms should support. Hence, utilizing the concept of SCU,
as a construct that gives the possibility to approach the issue
of human computation in terms of collectiveness [14], we
can argue the importance of collective trust in the success of
programmable1 SCUs.

B. Illustrative Scenario-Predictive Maintenance
We demonstrate SCU related concepts and argument the

importance of SCU trust with a scenario of predictive main-
tenance. Let us take the case of chiller maintenance in build-
ings maintained by city governance. In M2M (Machine-to-
Machine) environments that are supported by Cloud provider
infrastructures and platforms (IaaS and PaaS), these type of
chillers are monitored by different types of software and
devices (e.g., sensors), while the monitoring data is returned
by applications to be analyzed on-site or remotely. Operations
enterprises that provide remote monitoring services typically
monitor the working of chillers and report to experts of any
anomalies, who then try to figure out the dysfunctional com-
ponent and try to fix it. Thus, the typical maintenance is based
on incident management that is not predictive. Furthermore,
this process sometimes is counter-effective because it can
happen that procedures themselves that are taken for increasing
chillers efficiency cause problems. Thus, the experts cannot
make informed conclusions as to if the problem was related
to the undertaken maintenance procedure, or it was a fault in
one of the chillers components. What is needed is predictive
maintenance so that malfunctions are lessened and the very
high costs of chiller replacement and/or their operation costs
(e.g., high electricity costs) are avoided. In today’s direction
of management towards smart buildings and smart cities, this
problem becomes even a greater challenge as a consequence of
Big Data. These three challenges, namely deploying predictive
processes, better cause analysis and Big Data management
demonstrate the need of having multiple social compute units

1By programmable SCUs we mean SCUs that are automatically manageable
as for example software services and compositions.

with expert members of different areas. Consequently, we face
the challenge of which expert capabilities to trust and engage
in SCU task execution. In this scenario multiple SCUs may be
formed as follows:

a) SCU with ICUs that have data science expertise who
will manage Big Data coming from monitoring devices about
the different monitorable and measurable chiller properties and
components, such as: the temperature of the water going in and
out, the compressor state, the evaporator state, the water flow,
the state of the condenser, the on/off status of the chiller but
also environmental data. This SCU collects the data, cleans it,
filters it, structures it and provides it in the form of Data as a
Service (DaaS).

b) SCU with expertise in chillers and IT, that conducts
data analysis to detect malfunction probability in the chiller
or problems that are connected with the environment, (e.g,
improper water used that causes problems in the tubes).

c) SCU with on-site technical experts, that gets directions
from the analytic SCU (in b)) and takes action as required,
e.g, adapts the parameters if and when needed, and takes care
about chiller components. These different SCUs collaborate
through a common platform.

Cities (i.e, city governance bodies or contracted companies)
are the clients of SCU provisioning enterprises in this case
(those that provision the collaboration and communication
platform). Clients are given two options for choosing the SCUs
that will execute their tasks, they can chose to use existing
available and trusted SCUs that have previously worked on
similar tasks, or to request new SCUs to be formed. Figure
1 depicts the environment within which an SCU works, and
crucial operations for an SCU provisioning platform that
manages SCUs. The SCU provisioning platform keeps a record
of registered ICU profiles, including their expertise, and logs
their information regarding the SCUs in which they have been
included (so it maintains SCU profiles as well). These ICU
profiles may be registered and hosted on the SCU provisioning
platform but they can also be references to other online re-
source pools such as crowdsourcing platforms, expert networks
and social networks. The platform can run SCU formation
algorithms to create new SCUs from trusted ICUs, or it can run
a ranking algorithm for whole SCUs to chose the most trusted
one, depending on the submitted client request. The selected
SCU or the newly formed one, is monitored at runtime and
may be elastically adapted in response to different monitoring
events and based on different elastic strategies to best fit
customer requirements. The adaptations include activities such
as, task reassignments, delegations, addition of new ICUs and
removal of existing ICUs. Thus, the capabilities and expertise
of ICUs can be adapted, and consequently, the performance of
the SCU can be changed at runtime. The SCU collaboration
is supported by Communication Services, Cloud Services, and
also data from Internet of Things devices. The communication
is conducted through a middleware. A detailed description of
an SCU provisioning platform is out of the scope of this paper.

C. Observations and Challenges
From the described environment we derive the fundamental

trust related observations in SCU provisioning, generalized
across domains:
• Because an SCU is based on expertise and task

execution, a trust (and reputation) score of an ICU to
be included in the SCU should not be calculated solely



Fig. 1: SCU-Supporting Conceptual Platform and Working Environment

from the social trust scores of collaborators out of
interaction satisfaction, rather its performance within
the required expertise should be considered as well.

• SCUs are elastic in term of structure, price and non-
functional parameters. Consequently, the SCU trust is
elastic as well.

• SCU is a socio-technical formation that has ICUs
(people who offer their capabilities as services) as
its core resources, thus its nature is unpredictable
and trust can play a crucial role in regulating their
behavior.

These observations bring us to the following corresponding
research challenges:
• What are the fundamental metrics to be included in a

socio-technical trust model that will include both the
social and performance contexts of ICU?

• How is trust updated and how it fluctuates within the
dynamics of an elastic SCUs lifecycle?

• How can trust be included in elasticity strategies for
effective SCUs? What can be a feasible trust-based
incentive strategy for ICUs?

Because we have identified that trust is an indicator of key
importance in SCUs, in this paper we present a trust model
for SCUs including trust-update and incentive mechanisms,
through which we address the aforementioned challenges.

III. PRELIMINARIES
A. ICU and SCU Notation

To come to our trust model we extend some work, in
particular work on metrics, that we have previously presented
in [16]. In line with our previous work, we use here the
same annotation for a cloud of ICUs, which is our universal
set of ICUs as R = {r1, r2, r3...rn}, whereas we denote
the set of ICUs that are members of a particular SCU as
S = {s1, s2, s3...sn}, where S ⊂ R. We denote the collection
of SCUs in which an ICU has been a member of, over a
specific time period with Uτ = {Sτ1 , Sτ2 ...Sτn}.

B. Context
To account for the possibility of multiple capabilities of

people, it is important to note here that our metrics for
calculating the socio-technical trust for ICU and SCUs are
calculated in the context of a particular skill or expertise of
an ICU, for which an ICU is invoked in the SCU; e.g., a data

scientist can conduct tasks related to structuring and filtering
data to provide DaaS but he/she can also be involved in
another SCU for analysing data and creating operations plans.
Consequently, in fact we have separate roles for the same ICU,
so the same ICU is treated as separate in the context of its
expertise within different roles (icu1 in Figure 2). Tasks are
assigned based on a match of the skill needed to execute the
task and the skill that an ICU possesses. We define the set of
skills of an ICU with SK(si) = {sk1, sk2, ...skn}, and the
set of tasks assigned to an ICU with T (si) = {t1, t2, ...tn},
where ∀t ∈ T, ∃sk ∈ SK. The set denoting the skill-task/s
pairs is ST = {ST1, ST2, ...STn}, with its elements defined
as ST = {(sk1, {Tsub}) | Tsub ⊆ T ∧ Tsub 6= ∅ ∧ sk ∈ SK}.
The context C, in which we calculate a metric M for an ICU
corresponds to the skill type with which the ICU is invoked
in an SCU, so we have C(M, si) = sk ⇔ sk ∈ ST .

C. Metrics
Based on our previous work on ICU performance as well

as on some related work, we have identified key performance
indicators for ICUs and SCUs that we use in ICU/SCU elastic
management. We discuss some of them in this section, as they
are part of the core of our socio-technical trust model.

Effort - the effort of an ICU is the average time spent by
an ICU for executing a task, thus it indicates timeliness. The
SCU effort is an aggregate of the effort of its members-ICUs.

Productivity - we define ICU productivity as the number of
successfully executed tasks over a time unit. Thus, productivity
is the ratio of successfully executed tasks that are submitted
by an ICU as a result, and the total number of tasks executed
per time unit. The SCU productivity is an aggregate of the
productivity of the constituting ICUs.

Reliability - we derive ICU reliability from multiple atomic
metrics. Namely, in our previous work we have presented
two novel metrics, Willingness and Willingness Confidence-
Score. To clarify these metrics, we note that previously we
have introduced a task delegation mechanism that would avoid
overloaded ICUs. The mechanism achieves this by asking
appropriate and available ICUs if they are willing to execute a
particular task that needs to be delegated and reassigned, and
accepting acknowledgments from ICUs if they are willing to
execute that task. Thus, we presented a metric that we call
Willingness, and defined it as the ratio of the number of tasks
that are assigned to an ICU in response to its willingness



TABLE I: Notations

Notation Description

si, sk ICU, a member of an SCU

scui/S SCU/an SCU as a set of ICUs

ri ICU not associated to any specific SCU, a global
profile of an ICU in the pool of ICUs

m Number of invocations of a particular SCU

mc(sk, si) Trust vote from ICU k to ICU i based on their
collaboration experience within the same SCU

MCTS(si),MCTSgl Local, respectively global Membership Collaboration
Trust Score of an ICU

STTR Socio-technical trust score given to ICUs based on the
STT of the SCUs in which it has been a member

PT (si) Performance-based/Technical trust of an ICU in SCU

ST (scui) Social Trust of a specific SCU

STT f Socio-technical Trust metric of an SCU at the time of
formation

STT e Socio-technical Trust metric of an SCU that has been
invoked before

acknowledgments, and total willingness requests that are sent
to an ICU for working on tasks that need to be reassigned.
Moreover, we inferred another novel metric, the Willingness
Confidence-Score of an ICU which we defined as a product of
Willingness and the rate of success in executing the number
of tasks that are delegated to the ICU as a result of its own
feedback for willingness to execute those tasks,

WillingnessConf = SentAcks
ReceivedReqs ×

DelegatedTasksExecuted
TotalDelegatedTasks [16]. (1)

Thus, the Willingness Confidence-Score is a measure of the
delegation reliability of an ICU for tasks that have been
delegated to it, because it shows how true to its own statements
an ICU is by accounting how many tasks it has executed of
those it claimed that it is going to execute. To come to a
comprehensive reliability metric for an ICU we combine the
delegation reliability with the total successfully executed tasks
of an ICU, including tasks that are initially assigned to it,

Reliability =WillingnessConf × NonDelegatedTasksExecuted
TotalNonDelegatedTasks . (2)

Quality of Results-Client Satisfaction - the quality of tasks
results (QoR) depends on multiple factors, such as the domain
of the SCU goal, the task types, the SCUs structure [19]. In
this work we define it as the client satisfaction from the task
results. Thus, in our model this metric is calculated as a vote
from the client to the SCU. However, QoR can be set up to
be automatically measured in some cases when expected task
results are specified, so it can be included in our model when
its calculation manner is defined (see Figure 3). In order to ease
the flow of the discussion that follows, Table I gives some of
the frequently used notations used in our model.

Fig. 2: SCU operation and STT Model Concept

IV. SCU TRUST MODEL
A. ICU Socio-technical Trust and Reputation Model

To come to an SCU trust model, we first define ICU trust.
ICU trust can be seen from two perspectives: a) that from
an SCU in which it is a member of, and b) from the global
perspective of its performance and social impression derived
from each of its engagements in task execution within all SCUs
of which it has been a member of. Because the latter implies a
global trust score for an ICU, in this work we call it reputation
of the ICU, to differentiate it from its local trust score within
a specific SCU. We define an ICUs software-based trust, that
we call performance trust as the product of its productivity and
reliability, which are calculated from automated monitoring.

PT (si) = Productivity(si) ∗Reliability(si) (3)

To come to a social trust of an ICU in the context of an SCU
we define the Membership Collaboration Trust Score of an
ICU within the specific SCU. For this metric we propose the
strategy that each ICU within the same SCU votes for all other
ICUs of the same SCU before the SCU is dissolved. This
vote is given for the interaction satisfaction with the ICUs
with which the voting ICU has interacted within the same
SCU or, in the case if it has not interacted with, the vote
is cast based on the perception of what the ICU to whom it
casts a vote has contributed for the SCU. Thus, we assume
here that every member has either interacted with all others at
least once or if not then at least it knows what all members
have contributed. Consequently, the Membership Collaboration
Trust Score of an ICU is calculated from the votes that each
member of the SCU gives to another member of the SCU
before the SCU is dissolved as in Equation 1. This metric is
a weighted aggregation of scores, such that the votes of ICUs
with higher reputation are given higher weight. In this work,
in all equations the sum of the weights is 1, and every metric
value is in the range of (0,..1].

MCTS(si) =

|S|∑
k=1,k 6=i

w(sk) ∗mc(sk, si)/|S| − 1 (4)

From the global perspective, the Global Membership Col-
laboration Trust Score of an ICU in regard with all SCUs that it
has been a member of, is an aggregate of its MCTS score from
every SCU of which it has been a part of, taking into account
the number of invocations of each SCU, because an SCU can
be invoked multiple times for the same or different clients.
In addition, because human behavior is highly unpredictable
and changes with time, the inclusion of a time restriction
is important. Thus, a time period limit for the number of
SCU invocations, has to be assigned in calculations, with the
purpose of accounting for the freshness of trusted relations.

MCTSgl(si, τ) =
1

|Uτ |

|Uτ |∑
j=1

1

m

m∑
l=1

MCTS(si)l,j , (5)

where m is the number of invocations of a specific SCU,
of which an ICU has been a member, and Uτ is the total
number of different SCUs that the ICU has been a member of,
within a specific time τ . The local Socio-technical Trust of an
ICU (in the context of a specific SCU (invocation) STT (si)
is a weighted sum of its performance-based trust and the
Membership Collaboration Trust Score from its co-members
in the SCU.

STT (si) = wpt ∗ PT (si) + wmcts ∗MCTS(si) (6)



We name the global Socio-technical trust of an ICU,
Reputation(si). This is in line with the concept that trust in
an ICU is individual, whereas reputation is a global metric that
includes the trust scores from all the actors in the system who
have interacted with the ICU. We calculate the socio-technical
trust of an ICU as a sum of its STT and a socio-technical trust
score that we assign to based on the socio-technical trust scores
of the SCUs to which an ICU have belonged, considering all
invocations of ICUs within different SCUs in a specific period
of time.

Reputation(ri, τ) =
1

|Uτ |

|Uτ |∑
j=1

1

m

m∑
l=1

(STT (si)l,j + STTR(si)l,j). (7)

B. SCU Socio-technical Trust Model
We consider two cases where trust is important for SCUs,

namely a) when an SCU is newly-formed and composed from
ICUs with appropriate expertise for the SCU tasks, and b)
when the client may chose an already existing SCU. For SCU
formation algorithms, we propose an aggregated trust score
that is based on the reputation score of ICUs over which the
selection algorithm is executed. As every skill does not have
the same importance within an SCU, weights are given to ICUs
for different type of skills. For example in our scenario, data
scientist members may have higher weight than ICUs with
other roles. In different domains, the importance of expertise
may vary drastically depending on the SCUs goal. The socio-
technical trust for an SCU that is newly formed is calculated
as a weighted aggregate score of the reputation of the ICUs
of which it will be formed, because the reputation contains
the performance as well as the social trust of ICUs. Thus, this
metric can be used in formation algorithms to decide about
the most trusted SCU from the possible compositons.

STT f (scui) =

|S|∑
i=1

(wexpertise(si) ∗Reputation(si))/
|S|∑
i=1

wexpertise(si) (8)

In the case when a customer or a software client wants to
chose an SCU that has been previously invoked, our model
takes into account SCU metrics. SCU specific metrics are
aggregates of the ICUs that have taken part in it and it is also
a function of performance-based trust (Equation 9), and social
trust (Equation 10). PT or software-based/technical trust of an
SCU is an aggregate of the performance trust of its member
ICUs, considering the total number of SCU invocations over
a period of time.

PT (scui) =
1
m

m∑
k=1

|S|∑
i=1

PT (si)k/S (9)

ST (scui) =
1
m

m∑
k=1

wmcts ∗MCTS(scui)k + wcss ∗ CSS(scui)k. (10)

The social trust of an SCU is calculated as a weighted average
of MCTS of its members, and the customer satisfaction score
of the client (CSS) regarding SCUs performance and quality
of results. Here too, CSS is a subjective trust of the client
toward the SCU. Equation 8 defines the socio-technical trust
of an SCU.

STT e(scui) =
1
2 (PT (scui) + ST (scui)) (11)

Figure 3 shows the metrics that we have discussed and gives
an overview of how we model the Socio-technical Trust Score
of an SCU. The arrowed lines are in the direction from

more simple metrics, to metrics which are comprised of those
simples ones, and show how we derive the STT for SCUs from
both the social scores and automated scores based on SCUs
performance monitoring. As QoR metric is domain-dependent
we have not included it in our definitions but the model shows
that it is easy to add this and any other metric to it.

Fig. 3: SCU Socio-technical Trust Model Metrics

V. UTILIZATION OF THE SCU TRUST MODEL
A. A Trust-based Incentive Strategy for SCU Members

Social Capital as a collective gain is seen as one of
the main drivers for people to cooperate [21] and perform
well in collaborations. We were motivated by this concept to
model Reputation(si) but most importantly to use it as an
incentive method to control the behavior of SCU members for
performing efficiently and avoid misbehaviors. In calculating
the reputation of an ICU we include the Socio-technical Trust
Scores of each SCU that it has been a member of. Equation
(5) and Algorithm 1 describe the reputation update that is
our incentive mechanism. With this mechanism, ICUs become
aware that the total trust score of the SCU in which they are
engaged, will affect their reputation and so this may influence
their motivation to work and the SCU provisioning platform
can avoid or lessen misbehavings within the SCU. This in-
centive mechanism is enforced with designing the ICU/SCU
supporting platform in a way that gives ICUs the knowledge
that their performance data and the Membership Collaboration
Trust Score are included in the SCU STT score, and in turn
the SCU STT score is used to update their reputation. Lines
2-7 in Algorithm 1 check if all ICUs have finished their tasks
and ask them to give a membership collaboration trust score
to every other ICU in the SCU. Lines 8-14 calculate ICU and
SCU trust according to the presented model.

In [17] the authors argue that people have low incentives
to manually assign ratings. To overcome this challenge, our
strategy enforces Membership Collaboration Trust score voting
as a condition for an ICU so that its work can be accepted
and a payment can be made before the SCU is dissolved.
Thus, lines 15-18 update ICUs’ Reputation, pay the ICUs
after they have voted, and the SCU dissolves. On the other
hand, the incentive mechanism obviously brings the challenge
of keeping ICUs from misbehaving while voting, because the
socio-technical trust score of the SCU in our model is higher
the higher the trust score between SCU members is, thus ICUs
can be tempted to give a higher MCTS to increase the SCU
trust so that their reputation is also increased. This might lead
to unfairness, because ICUs can vote high for others only for



their own gain. To overcome the issue on unfair ratings, based
on the voter ICUs current reputation, we give it an allowed
trust range for voting (line 5 of Algorithm 1). This range can
vary according to the range values that a user will impose on
the model. In this work, if the voter ICUs (sk) reputation is
lower than 0.5, we chose the allowed voting ranges for voted
ICUs (si) as follows:

mc(sk, si) =

{
[0.5, 1] if Reputation(si) > 0.5;
[0.1, 0.5] if Reputation(si) < 0.5.

B. A Trust-based and Cost-effective SCU Elasticity Strategy
The objective of an SCU provisioning platform is not

only to provision an appropriate SCU for a specific client,
but also to maximize performance, which means keeping
deadlines, submitting high quality results and maintaining the
SCU operation cost within the allowed budget. In our scenario,
e.g., we need to ensure that DaaS is always available for
the second SCU(b), and that a person is always available for
immediate response for the third SCU (c). This requires for
ICU availability at all times for all SCUs. For this, to optimize
performance with Algorithm 2 we propose an approach for
elastic SCU adaptation considering ICU trust (that includes
availability and performance metrics). The algorithm monitors
each task and in case of a time-threshold at one ICU, it
delegates the task to another available ICU. Lines 2-6 check
for the reputation score and current execution state of the ICU
from which the task needs to be withdrawn and delegated to
another. If its trust score is less than 0.5 and it does not have
tasks in execution it is removed from the SCU. Lines 8-12
check ICU reputation and cost for all ICUs in the pool of
available ICUs, regardless if they are members of the SCU or
not. ICUs that have a reputation higher or equal to 0.5 and
that fit the allowed cost are ranked in ascending order of their
task queues. A request to work on the task that needs to be
delegated is then sent to the ranked list of ICUs. The task is
finally reassigned to the ICU highest on the ranked list that

Algorithm 1 Membership-Collaboration Trust Update Algo-
rithm as an Incentive Mechanism
Require: icu worker in SCU

1: for all icu in SCU do
2: if icu.getStatus() == FINISHED TASKS then
3: icuCurrent = icu.geticuId()
4: for all icu in SCU && icuId! =icuCurrent do
5: getTrustRange(icu)
6: votes ← mc(icuCurrent, icu)
7: icuCurrent.UpdateMCTS(votes)
8: icuMCTSList← getMCTS(icuCurrent)
9: icuPTList← getPT (icuCurrent)

10: /* calculate SCU Socio-technical Trust */
11: scuMCTS = calculateSCUMCTS()
12: scuCSS = getClientSatisfaction()
13: scuPT = calculateSCUPT ()
14: scuSTT = calculateSCUSTT ()
15: for all icu in SCU do
16: /* calculate the reputation of ICUs by adding the SST score

derived from the current SCU, to the existing global socio-
technical trust score */

17: icu.Reputation = UpdateReputation(icu, scuSTT )
18: icu.Payment = getICUPayment()
19: SCU ← SCU \ ICU /* dissolve SCU */

has sent an acknowledgment for willingness to execute the
task. If the ICU is not a member of the SCU, it is added. The
SCU trust is updated at runtime during elastic adaptation of
the SCU.

Algorithm 2 A Cost-Effective Algorithm for Elastic Adapta-
tion of SCUs based on ICU Reputation
Require: icu member of SCU, icu member of P
Require: task assigned in SCU

1: for all task in T do
2: if task.inIcuQueueDuration ==
3: task.thresholdDuration then
4: icuCurrent = task.getICU()
5: if icuCurrent.icuReputation 6 0.5 &&
6: icuCurrent.taskExecuting = 0 then
7: SCU ← removeICU()
8: for all icu in P do
9: if icu.STT > 0.5&&

10: (currentCost+ icu.Cost) ≤ Budget then
11: rankingList← min(icu.taskQueue)

12: sendWillingnessReq()
13: /* Assign the task on threshold to the highest ranked ICU

that acknowledges a Willingness request */
14: for all icu in rankingList do
15: if icu.Ack() == true then
16: icuCurrent = icu
17: if icu is not a member of SCU then
18: SCU ← addICU(icuCurrent)

19: break

VI. EXPERIMENTS
We evaluated our trust model via simulations. We designed

ICU Profiles with static properties (unaltered values) and
dynamic properties (that are updated at runtime). The static
properties are skill type and cost per task, whereas the dynamic
properties are: Productivity, MBCT, ICUReputation, STT and
all the atomic metrics discussed in this work, all of which
are calculated according to our model. Nevertheless, we note
here that we calculate social trust only with membership
collaboration trust scores not including the client satisfaction.
Tasks are designed with states: ASSIGNED, INEXECUTION,
SUCCESS, FAILURE (if in FAILURE state a task is del-
egated). Tasks are individually executed and they are not
interdependent.

Base Algorithm We implemented an algorithm which we
take as a base for comparison and which adapts the SCU
without considering trust. We assigned tasks randomly and
delegated randomly to ICUs. Graph a in Figure 4 shows the
STT score, MCTS and Productivity for multiple invocations
of an SCU. We calculated trust assigning different weights
to performance and social trust (0.4 for PT and 0.6 for ST).
Graph c shows performance trust updates of particular SCU
invocations at runtime. If we take the 10th invocation as
an example, we can see that we have four delegated tasks
out of five in total so the decline in the performance trust
(productivity) in graph c comes at the point when delegations
occur. If we look at graphs a and b for SCU7, we notice that
the performance trust is higher than the social trust, because
here we have a high number of delegations and exclusions of
ICUs. This means, that a small number of ICUs executed high
number of tasks but the social trust of the SCU is low because
many ICUs failed to execute tasks.



(a) (b) (c)

Fig. 4: SCU metric updates within time

(a) (b) (c)

Fig. 5: SCU metric updates within time

Algorithm 1 In order to evaluate our trust models behavior
we implemented the aforementioned Algorithm 1 with the
following settings: we set all the ICUs’ reputation in the SCU
to be higher than 0.5 and thus we assigned the delegated tasks
only to ICUs that have MBCT higher than 0.5. We set the
weight of both the social and performance trust of the SCU to
be the same, i.e. 0.5 for both. We set ICUs that had previously
failed at all assigned tasks to be excluded from the SCU after
they delegate a task. Analyzing the results of this experiment
we see SCU adaptations due to delegations. In some SCU
invocations tasks are delegated to SCU members, in some
they are delegated to ICUs that were not members and so
there were inclusions of new ICUs and exclusions of ICUs.
Figure 5 shows the end results of each SCU invocation (out
of 15 invocations), while c shows performance trust updates
of some selected SCUs at runtime. Examining the case of the
SCU11 from 5a) we noticed that its PT was 1 while ST was
lower and the STT was high as well. From 5b we noticed
that the number of ICUs is lower at SCU dissolution than at
start, which means that some ICUs are excluded and thus their
productivity is not included in the PT calculation. Hence, the
PT is constant at 1.0. Examining ICU12 we saw that at runtime
the number of ICUs also changed with delegations. Some tasks
were delegated to ICUs within the SCU, whereas some new
ICUs were included for executing a task that needed to be
delegated. An ICU with a failed task was not excluded from
the SCU and its performance was included in calculating the
SCUs PT. Hence the lower points in PT 5c for SCU12. In all
cases, those ICUs that had previously performed well but had
failed in a task or two were still included in the STT calculation
so the variations of the trust score to lower values is also due
to this fact and not only due to the number of failed tasks. For

excluded ICUs the MBCT is low, in our implementation this
value is excluded from the ST calculation at runtime. Hence
the social trust values are relatively high in 5a.

Comparing the two algorithms it is clear that the algorithm
implemented with our STT model keeps a steady high-value
trust of an SCU during runtime as well as with time brings
a steady performance of an SCU as compared to a strategy
that adapts the SCU without considering trust (both social
and technical). As much as experimenting with real data sets
would give more accurate results it is very difficult to conduct
the experiments due to lack of available data sets that fit the
SCU construct. We designed the ICU profiles the best we
could to simulate human profiles and behavior. The experiment
also reflects the advantage of using our model in adaptation
strategies for SCUs, because based on our model the SCU can
be tuned in terms of structure and non-functional parameters
to keep a certain level of desired performance.

VII. RELATED WORK
Social Compute Units The fundamental work that first

introduced Social Compute Units and defined their nature and
behavior is presented in [4]. SCUs utilization in dynamic
processes is presented in a recent work [6]. The concepts,
investigation and proposals for provisioning human capabilities
within the service oriented model are presented in [5]. In our
previous work, [16], we introduced a conceptual architecture
for a platform that provisions elastic SCUs, along with impor-
tant metrics and strategies that can be used to manage SCUs in
an elastic manner. This work is a continuation of it, such that
our trust model for SCUs adds further details that strengthens
the effectiveness of SCU management.

Trust in Social Computing Trust as a computational
concept is first introduced by Marsh in [13], while Urbano



models Social Computational Trust in [20]. Crowdsourcing is
the main paradigm that utilizes human capabilities in online
task execution. Different context-based platforms such as those
enabling pure social networking and those enabling networking
in terms of expertise are an important part for provisioning
human capabilities. Thus, there is a solid amount of work
that investigates trust for human computation from the pure
crowdsourcing perspective, modeling individual worker trust,
as well as work that mix crowdsourcing with context-based
networking, such as those in expert networks. Golbeck in
[9], describes the TidalTrust algorithm for computing trust in
online social networks, which is based on the breadth-first
search. [17] present a framework to analyse trust in mixed
service oriented networks, metrics and rules for inferring trust.
They solve the issue of overloaded high-trusted workers with
delegations. We believe that our approach, further strengthens
trust models that consider delegation mechanisms because
delegations are more efficient with our willingness confidence
metric. Most trust models concerning social computing omit
the aspect of people collaborating for executing complex tasks
and their semi-automatic elastic management. Rather, most
of the existing work focuses on initial collaborator/partner
selection and more often analyze trust on the individual within
social networks, which include for example the exchange of
eCommerce goods in electronic marketplaces [22], user trust in
mobile networks [12], or simple non-complex task executions
such as those similar to HITs in Amazon Mechanical Turk.
Some work have modeled trust in group collaborations, such
as [3]. The difference of our work is that it concerns complex
socio-technical systems, where collaborations are automati-
cally managed with input from a human-in-the-loop.

Agent-based Trust Multidimensional trust inference for
selecting a partner for collaboration is described in [11]. The
mechanism of trust and reputation is based on multiple sources,
such as from direct interactions, and trusted recommendations
from direct and indirect communication that they name as
witness reputation. [1] also considers indirect trust, where one
agent is trusted to give recommendations about others within
a specific context.

VIII. CONCLUSIONS AND FUTURE WORK
We presented our investigation on the need for a combined

SCU trust involving both social and automatically measured
performance trust, and proposed a trust model to be used
in SCU formations as well as in selecting already existing
SCU structures for task executions. For this, we have defined
and used performance metrics taking into consideration the
freshness of performance data to develop trust metrics. An
overall SCU trust metric is important for selecting an already
existing SCU and avoiding the SCU formation step, as a
speeding up of SCU invocations. Our example implementation
of the model showed that when SCU adaptations are based on
trust scores that include performance as well as social metrics,
they are effective in keeping performance at more constant
values and within a desired range. Our future work includes
investigation on Service Level Agreements for elastic SCUs.
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