
PRINGL – A Domain-Specific Language for
Incentives in Social Computing

§

Supplement Materials

Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
{oscekic,truong,dustdar}@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at

1 Built-in Operators

pringl provides a number of operators for manipulating time, workers and their
relationships:

– Set operators. – Union, intersection and complement on Collection<T>.
– Time operators. If working with adjustable intervals, it is advisable to use

operators wherever possible as they are evaluated at run time and guaran-
tee that any external changes (e.g., deadline extensions) will be taken into
account. A common use-case would see a user initializing an Interval from
an iteration, and using interval operators to specify points in time in which
an action is needed. Time operators are commonly used with temporal spec-
ifiers.

• StartOf(Interval i) – returning the Collection<PoiT> containing a
single time point representing the interval’s currently expected starting
time.

• EndOf(Interval i) – returning the Collection<PoiT> containing a
single time point representing the interval’s currently expected ending
time.

• PartOf(Interval I, double p) – p[0, 1] returning the PoiT at per-
centage p of the interval. PartOf(i, 0) == StartOf(i)PartOf(i, 1) ==
EndOf(i)

• MultiPoint(Interval i, int k) – returns a Collection<PoiT> of points
evenly distributed between StartOf() and EndOf().

• AllOf(Interval i) – returns a Collection<PoiT> of points represent-
ing all time points (depending on the resolution of the underlying system)
contained in the interval.

– Temporal specifiers. These are special operators used to instruct the exe-
cution environment when to perform certain actions or evaluate predicates.
As such, they cannot be directly used in user-provided programming code,
but are rather offered as a choice through a visual GUI element (drop-down

box) where needed. Internally, they are represented as built-in functions that
operate on a collection of PoiTs that is provided by the environment at run-
time.

• Always(Collection<PoiT>) – “at each PoiT in collection”.
• Sometimes(Collection<PoiT>) – “at least once in collection”.
• Once(Collection<PoiT>) – “exactly once in collection”.
• Never(Collection<PoiT>) – “never in collection”.
• First(Collection<PoiT>) – “oldest in collection”.
• Last(Collection<PoiT>) – “newest in collection”.

– Structural operators. They perform structural queries/modifications by exa-
mining/re-chaining the relationships between worker nodes in the abstrac-
tion interlayer (graph) model by using graph transformations1 [1].

• Querying:

* neighborsOf(Worker w, string relationType, int numHops,

bool directed) – returns a Collection<Worker> filled with work-
ers numHops hops away from Worker w over un-/directed relation-

Type relationships.
* managersOf(Worker w) – returns Collection<Worker> filled with

manager(s) of worker W. The relationship type representing the
managerial relation is obtained from the abstration interlayer.

* subordinatesOf(Worker w) – analogous to managersOf.

• Modifying:

* changeManager(Worker w, string teamLabel) – rechains the im-
plicitly determined managerial relations within the members of the
tealLabel team to point to the new manager.

– Aggregation operators. They perform calculations on performance metrics or
events over a Collection<PoiT>s, in a fashion similar to SQL’s aggregate
functions. The collection of time points over which the operators calculate
is provided by the runtime environment at each invocation. They can only
be used in predicate logic blocks P that are directly or indirectly reach-
able through declaration relationships originating from a WorkerFilter F

element.

• @AVG(double m) – returns the average value of the metric m over the
given time point collection.

• @COUNT(string evt) – returns the number of occurrences of event evt
in the timespan delimited by the first and last PoiT in the given input
collection.

• @MAX(double m) – returns the largest value of the metric m over the
given time point collection.

• @MIN(double m) – returns the smallest value of the metric m over the
given time point collection.

• @SUM(double m) – returns the sum of the values of the metric m over
the given time point collection.

1 Please note that the list of structural operators is non-exhaustive at the moment
and serves purely for demonstrational purposes.

2 Complex Incentive Elements

2.1 Incentive Logic Subtypes

Subtype Symbol Environment-provided
input

Allowed
output

Intended usage

TimeLogic T all named Intervals, all
Workers, reference to
global state

Collection
<PoiT>

To return time intervals/-
points at which a predi-
cate should be evaluated
or an action performed.

StructureLogic S reference to the structural
model, reference to global
state

Collection
<Worker>
for queries:
found
workers;
for trans-
formations:
affected
ones

To perform graph
queries/transformations
on the model representing
workforce structure and
relationships. A transfor-
mation S is only allowed
to be invoked from A .
A query S can only be
invoked from P and F .

PredicateLogic P currently evaluated
Worker, all Workers,
currently evaluated PoiT,
reference to global state

bool To evaluate whether a
predicate holds at given
moment.

FilterLogic F currently evaluated In-
terval, all named Inter-
vals, currently evaluated
Worker, all Workers, ref-
erence to global state

arbitrary To provide business logic
for evaluating past worker
performance.

ActionLogic A Workers to be reward-
ed/punished, reference to
global state

Collection
<Worker>
(affected)

To perform rewarding
actions over workers or
global variables.

Table 1. IncentiveLogic subtypes

2.2 Worker Filter Fields

Field Description

time restr An optional T returning a collection of time points which should be considered
when evaluating workers. If omitted, the default value is a collection containing
only a single PoiT representing the present moment.

temp spec An optional temporal specifier (Section ??) determining how to interpret the fil-
ter predicate values across different time points. If unspecified, the predicate is
evaluated only for the last (most recent) PoiT in the collection.

auxiliary An optional F that is used to fetch some global metrics needed for worker eval-
uation, and possibly provide some intermediate results to be used for evaluating
the filter predicate.

predicate A required P providing the predicate that will be evaluated against each worker
in specified time points.

Table 2. SimpleWorkerFilter fields.

2.3 Rewarding Action Fields

Field Description

filter An optional F determining the workers to which to apply the action. If omitted,
the worker collection is by default provided by the runtime environment from the
output of the original evaluation filters.

exec cond An optional P establishing whether the currently evaluated worker earned the
reward/punishment or not. If omitted, considered ‘true’ by default.

exec times An optional T returning Collection<PoiT> determining the possible execution
points. If omitted, the environment assumes current PoiT and executes immediately.

temp spec An optional temporal specifier further restricting the original collection of execu-
tion PoiTs. Defaults to Always() if omitted.

delay A hidden parameter set by the environment and used for recalculating execution
times in composite rewarding actions. It contains a non-negative integer time offset
added to the execution PoiTs. The actual time unit is determined as the basic time
unit of the underlying layer (an RMod tick in our case). The default value is zero.

action logic A mandatory reference to an A element containing the system-specific business
logic that invokes the rewarding action.

Table 3. SimpleRewardingAction fields.

2.4 Composite Rewarding Action

A CompositeRewardingAction definition consists of graphical elements repre-
senting instances of previously defined RewardingActions. It must contain ex-
actly one initial action a0, and exactly k0 final actions, where k0 is the number
of a0’s outgoing edges. The elements are connected with directed edges denoting
at the same time: a) Worker flow; and b) time delay. There must be no cycles
in the graph, i.e., the flow must be a tree with the root in the initial action,
with each final action being the leaf. As any other pringl composite type, a
composite action can also expose propagated or user-defined parameters.

Worker flow. A RewardingAction returns affected workers and passes
them over outgoing edges. Affected workers are those workers on which the action
was successfully applied by the underlying system. The definition of a successful
application is system-specific. Therefore pringl expects the underlying system
to acknowledge via abstraction interlayer that the suggested action was accepted
and successfully applied to a worker. The passing of workers is similar to that
of composite filters. The two major differences are:

1. The absence of graph cycles prevents the union (∪) operation on passed
worker sets.

2. Any RewardingAction element can decide whether to use the provided in-
put workers, or completely ignore them, and identify the input workers by
itself. For example, a SimpleRewardingAction does it by initiating the op-
tional filter field. This limitation allows the worker flow to be changed at
arbitrary places in the composition.

Figure 1 shows an example of CompositeRewardingAction definition. It
also shows an example of worker-passing. The initial action A is given the

MyCompositeAction

B:T2a:A1

<<initial>>

A:T1 C:T3

<<final>>

D:T4

<<final>>

3 5

0

p
q

(k,m)

(k,m)
(p)

(p)

(k)

output
(k, m, p)

non-affected
(l, n, q)

input
(k, l, m, n)

k

l

m

n

Fig. 1. An example CompositeRewardingAction definition.

set (k, l,m, n) as input. The execution of A ends with successful rewarding of
workers (k,m). This intermediate set is immediately added to the resulting out-
put set. The same intermediate set of workers is passed to actions B and D .
Action D ends with rewarding only one of those workers – (k). k is already part
of the output, so nothing else happens on this execution branch. The action B ,
on the other hand, discards the input worker set (k,m), and determines its own
input set (p, q). After execution, B returns just (p), which is also added to the
aggregate output set and passed further as input to C , which also happens to
award p successfully.

Time delay. Each edge can optionally specify a time delay as a non-negative
integer without the unit. If omitted, zero is assumed. The actual unit is de-
termined transparently to the user as the basic time unit of the abstraction
interlayer. pringl forwards the delay value to the action that the edge point to.

If this action is a SimpleRewardingAction, this equals to adding the specified
time offset to the hidden delay parameter. Later, when executing the action,
pringl will add the value of the delay parameter to each PoiT returned by
action’s exec times T . If the delay is forwarded to a CompositeRewarding-

Action, then the delay is forwarded to its initial action.

The execution of a composite action starts by first breaking it into linear
execution paths containing constituent simple actions. For each execution path
pringl then takes into account specified delays for each simple action and im-
mediately schedules it with the abstraction interlayer. However, as in this case
we need to pass worker sets between actions happening at different times pringl
needs to store the intermediate results (worker sets) that actions scheduled for
a future moment will collect when executed (memoization). In case more than
one action is scheduled for execution at the same time, the order is unspecified.

Example. The notion of affected workers is important for incentivizing, be-
cause a choice on whether or not to perform a subsequent rewarding action may
depend on whether previous actions were successfully applied. Consider a com-
pany that wants to reward workers either with free days or with a monetary

reward. The choice is left to the worker. Free days are offered first. Only workers
that refuse the free days will be awarded monetary rewards.

BonusOrDays

<<initial>>

a:FreeDays

<<final>>
30

b:RewardAtEndProject

A

AwardFreedays

FreeDays

 filter: null

 exec_cond: null

 exec_times: null

 temp_spec: null

params:

+ int action_logic.amount

 delay: (auto)

 action_logic: AwardFreeDays

 2

… Collection<Worker> result …
if (RMod.Notify(_w, MSG_FREEDAYS, amount)) {
 result.Add(_w); //affected workers
}
return result;

A
name: AwardFreeDays
params: Worker _w (auto),

int amount
output: Collection<Worker>

params:
+ int action_logic.amount 3

Fig. 2. A CompositeRewardingAction letting the workers choose one of the rewards.

We define a new composite rewarding action BonusOrDays (Figure 2) that,
for the sake of demonstration, assumes the existence of a RewardAtEndProject

action (similar to the one from the original paper) to award monetary bonuses,
as well as a newly-defined action FreeDays to award free working days to the
workers.

The output of a:FreeDays is the set of workers who accepted the 3 free
days offered. However, due to a complement edge (9) connecting a and b, the
output set of a is subtracted from the original input set. Therefore, the input of
b:RewardAtEndProject are only those workers who declined to accept working
days as award, and want to be evaluated at the end of project and paid a bonus
according to their performance.

Acknowledgments

This work is supported by the EU FP7 SmartSociety project under grant�600854.

References

1. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: A software
engineering perspective. In: Proceedings of the First International Conference on
Graph Transformation (ICGT ’02). Volume 70., London, UK, Springer (2002) 402–
429

	PRINGL – A Domain-Specific Language for Incentives in Social Computing § Supplement Materials

