
PRINGL Example – Rotating Presidency

Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
{oscekic,truong,dustdar}@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at

1 Use Case

A company wants to set up a rotating presidency incentive scheme, in which
the team becomes managed in the upcoming iteration by the currently best-
performing team member, unless that team member was already presiding over
the team in the past k iterations. The scheme motivates the best workers psycho-
logically by offering them a more prestigious position in the hierarchy. However,
in order to keep team connectedness in a longer run, foster equality and fresh
leadership ideas, a single person is prevented from staying too long in the man-
agerial position, and is replaced by the second-best team member (Figure 1).

This example was chosen to additionally showcase the basic use of structural
incentives. Structural incentives are the incentives that consider relationships
between workers (e.g., past collaborations, managerial relations, friendships)
within: a) incentive application conditions (filters); and/or b) rewarding actions,
by ‘re-chaining’ the relations in order to accomplish a goal (e.g., establish new
collaborations, alter communication links, promote, demote, change data flows).

Fig. 1. Rotating presidency incentive scheme with maximum two consecutive terms.

2 Implementation with PRINGL

Differently than in other examples, here we present the solution in a top-down
approach, as it is more understandable for a reader already acquainted with
pringl’s features.

2.1 Incentive Scheme

In Figure 2 an incentive scheme named RotatingPresidency is defined. It con-
tains a set of global parameters that are used for configuring the execution of the
scheme1. The integer teamID uniquely defines the team that we want the scheme
applied to. The iters parameter specifies the maximum number of consecutive
iterations a team member is allowed to spend as a manager.

The scheme consists of two IMs with the same priority. This means that the
order of execution is unknown, implying that the two mechanisms should not
depend on each other’s outcomes. As we will see, in this case we accomplish this
by specifying mutually exclusive incentive conditions. The RewardBest mecha-
nism installs the best worker as the new manager if (s)he is not the manager
already. The PreventTooLong mechanism will replace the current manager if
(s)he stayed too long in the position, even if the manager resulted again as the
best performing team member. ‘Installing’ or ‘replacing’ a manager is actually
performed by re-chaining of management relations in the structural model of the
team in the abstraction interlayer.

2.2 Incentive Mechanisms

The two IMs (RewardBest and PreventTooLong) necessary for modeling the
rotating presidency scheme are also shown in Figure 2. Both IMs get executed
always as the nullified exec cond fields default to true. The associated filters
are passed the collection of all workers. As explained in Section 2.4, the F

Candidates will return potential candidates for the manager position – the best
performing Worker and the current manager. In case it is the same person, the
returned collection will contain a single Worker element.

As IM RewardBest’s inc cond field is non-null pringl automatically passes
the output of the filter to the inc cond P element for further evaluation2. In
this case, this means that the manager candidates are passed to the P NotSame

to decide whether another worker performed better in the meantime and the
actual manager should be replaced. If that is the case (inc cond evaluates to
true) the rew action A RewBest is triggered and passed the candidates.

Similarly, the IM PreventTooLong invokes the same filter. However, it has
a complex incentive condition field, referring to two P elements, which both
need be visually declared. pringl allows this as a shorthand notation instead of
forcing the user to create a container P element to perform the same logical
function. In this case, the exposed parameters cannot be simply referenced by us-
ing the field name, but rather the parameters are accessed through an associative
array (C# Dictionary) bearing the same name as the field, while the names of the

1 For the purposes of this demonstration, we assume that the iterations and perfor-
mance metrics are defined and managed at the abstraction interlayer (RMod). This
scheme uses the ‘effort’ metric, but any other compatible performance metric could
have been used in this demo. We also assume the abstraction interlayer triggers the
scheme execution upon each relevant iteration’s end.

2 pringl passes also the other auto-parameters specified in Table 3 in the original
paper, but we do not list them here if they are not relevant to this example.

A

SetManager

RewSecondBest

 filter: SecondBestTeamWrk

 exec_cond: null

 exec_times: null

 temp_spec: null

params:

+ int teamID
- int filter.teamID
- int action_logic.teamID

 delay: (auto)

 action_logic: SetManager

RewBest

 filter: BestTeamWrk

 exec_cond: null

 exec_times: null

 temp_spec: null

params:

+ int teamID
- int filter.teamID
- int action_logic.teamID

 delay: (auto)

 action_logic: SetManager
A

SetManager

Candidates

RewSecondBest

PreventTooLong

 filter: Candidates

 exec_cond: null

 appl_restr: default

 inc_cond: !NotSame && WasTooLong

 rew_action: RewSecondBest

 priority: 0

params:
+ int filter.teamID
- int rew_action.teamID
- int inc_cond["WasTooLong"].iters
+ int iters

P

NotSame

Candidates

RewBest

RewardBest

 filter: Candidates

 exec_cond: null

 appl_restr: default

 inc_cond: NotSame

 rew_action: RewBest

 priority: 0

params:
+ int filter.teamID
- int rew_action.teamID
+ int inc_cond.iters

Priority 0

i1:RewardBest

_global.teamID

global:
int teamID 4572
int iters 2

RotatingPresidency

i2:PreventTooLong

filter.teamID
inc_cond.iters _global.iters

_global.teamID

SecondBestTeamWrk

BestTeamWrk

a:GetTeam b:GetBest

<<initial>> <<final>>

params:
- int a.teamID
- int b.teamID
+ int teamID

Candidates

:Passthru

<<initial>>

<<final>>

:Passthru

b:BestTeamWrk

a:CurrentMgr

params:
- int a.teamID
- int b.teamID
+ int teamID

P

 private static Dictionary<Worker, int> leaderHistory;
...
 if (_ws.Count == 2) {

if (leaderHistory.ContainsKey(_ws.First)){
 leaderHistory.Clear();
 leaderHistory[_ws.Last] = 1;

 }else{
 leaderHistory.Clear();
 leaderHistory[_ws.First] = 1;
}

}else //current manager was also the best
if (leaderHistory[_ws.First]) < iters {
 leaderHistory[_ws.First]++;
 return false;
}

return true;

name: WasTooLong
params: Collection<Worker> _ws (auto)

int iters
output: bool

teamID
teamID

teamID
teamID

S

// Compiled GrGen.NET rule:
rule SET_MANAGER(var teamID:int, var newMgrID:int){
 newMgr:Worker;
 if {newMgr.marked == teamID && newMgr.id == newMgrID;}
 notNewMgr:Worker;
 if {notNewMgr.marked == teamID &&
 notNewMgr.id != newMgrID;}

<-oldRelation:ManagedBy-> notNewMgr;

 negative {notNewMgr-:ManagedBy->newMgr;}

 modify { notNewMgr -:ManagedBy-> newMgr;
delete(oldRelation);

 }
}

name: SET_MANAGER
params: int teamID,
 int newMgrID
output: void

filter.teamID

teamID

teamID

P

IsTeamMember

GetTeam

time_rest: null

temp_spec: default

auxiliary: null

predicate: IsTeamMember

params:
+ int teamID
- int predicate.teamID teamID

sm

P

 return _w.teamMemberships.Contains(teamID);

name: IsTeamMember
params: Worker _w (auto)

int teamID
output: bool

A

Collection<Worker> affected = sm(teamID, _ws.First.ID);
return affected;

name: SetManager
params: Collection<Worker> _ws (auto)

int teamID
output: Collection<Worker>

gm

P

 return _w.teamMemberships.Contains(teamID);

name: IsManager
params: Worker _w (auto)

int teamID
output: bool

 if ((int)_parent.getParam("mgrID") != 0) return;
 foreach (Worker w in _ws) {w.mark(teamID);}

 _parent.setParam("mgrID", gm(teamID));

F
name: GetMgrByRelations
params: Collection<Worker> _ws (auto)

int teamID
output: void

P

 return (_w == GetWrkBestMetric.theBest);

name: IsBest
params: Worker _w (auto)
output: bool

S

// Compiled GrGen.NET rule:
rule MANAGER(var teamID:int):(Node){

manager:Worker;
if { manager.marked==teamID; }
worker:Worker;
if { worker.marked==mark; }
worker -:ManagedBy-> manager;
negative {

otherManager:Worker;
if { otherManager.marked==teamID;}
manager -:ManagedBy-> otherManager;

}
modify {

return (manager.id);
}

}

name: GET_MANAGER
params: int teamID
output: int

F
name: GetWrkBestMetric
params: Collection<Worker> _ws (auto)
output: void

 public static Worker theBest;
 ...
 foreach (Worker w in _ws) { //get latest values
 w.effort = RMod.getWorkerMetric(w, metricName);
 }
 double bestResult = _ws.Max(x => x.effort);
 theBest = _ws.First(x => x.effort == bestResult);

CurrentMgr

a:GetTeam b:GetManager

<<initial>> <<final>>

params:
- int a.teamID
- int b.teamID
+ int teamID

teamID
teamID

P

IsBest

GetBest

time_rest: null

temp_spec: default

auxiliary: GetWrkBestMetric

predicate: IsBest

params:
- string metricName "effort"

F

GetWrkBestMetric

P

F

IsManager

GetMgrByRelations

GetManager

time_rest: null

temp_spec: default

auxiliary: GetMgrByRelations

predicate: IsManager

params:
- int auxiliary.teamID
+ int teamID
- int mgrID

teamID

0

P

NotSame

BestTeamWrk

filter.teamID
inc_cond.iters _global.iters

teamID

teamID

filter.teamID

a:BestTeamWrk b:GetBest

<<initial>> <<final>>

SecondBestTeamWrk

params:
- int a.teamID
- int b.teamID
+ int teamID

teamID
teamID

P

WasTooLong

iters

 if (_ws.Count > 1)
return true;

 else
return false;

P
name: NotSame
params: Collection<Worker> _ws (auto)
output: bool

Fig. 2. Modeling the rotating presidency incentive strategy in pringl. Segment show-
ing the scheme, mechanisms and rewarding actions.

used P elements serve as key names. For example, to access the P WasToo-

Long’s parameter iters from IM PreventTooLong where P WasTooLong is
used in the inc cond field, we must write: inc cond["WasTooLong"].iters As
it can be visually tiring to read the lengthy fully-qualified names of propagated
parameters, we often stop propagating such parameters and propagate a new,
local one with the same name, whose value we then copy to the long-named
parameter (e.g., just iters instead of inc cond["WasTooLong"].iters).

The IM PreventTooLong’s full incentive condition is: !NotSame && WasToo-

Long. The first part of this condition ensures that the rewarding action A

RewSecondBest of IM PreventTooLong will never get executed at the same time
as the A RewBest of the IM RewardBest.3

If the composite incentive condition evaluates to true, this means that the
actual manager occupied the position for too long, and that it should be now

3 By scheduling the rewarding actions in its Timeline mechanism the abstraction
interlayer (RMod) takes care that all the filters read the same values and that the
order of execution of IMs will not affect those values before the execution of the
whole scheme is completed.

replaced by the second-best worker. To do this we invoke the A RewSecondBest

and pass to it the collection of workers returned by the filter F Candidates.

2.3 Rewarding Actions

The rewarding actions RewBest and RewSecondBest (Figure 2) are almost iden-
tical, differing only in the filter they use – with former using the BestTeamWrk

and the latter the SecondBestTeamWrk. The fact that a rewarding action A

declares its own filter means that it discards the workers passed to it by the
pringl environment from the encompassing IM’s filter and rewards those re-
turned by the local filter. In both actions most fields are nullified, returning the
default values. This means that the action logic A SetManager will be un-
conditionally scheduled for immediate execution in the interlayer. Both actions
also do the same parameter name shortening we explained before, purely for
readability purposes.

2.4 Worker Filters

A

SetManager

RewSecondBest

 filter: SecondBestTeamWrk

 exec_cond: null

 exec_times: null

 temp_spec: null

params:

+ int teamID
- int filter.teamID
- int action_logic.teamID

 delay: (auto)

 action_logic: SetManager

RewBest

 filter: BestTeamWrk

 exec_cond: null

 exec_times: null

 temp_spec: null

params:

+ int teamID
- int filter.teamID
- int action_logic.teamID

 delay: (auto)

 action_logic: SetManager
A

SetManager

Candidates

RewSecondBest

PreventTooLong

 filter: Candidates

 exec_cond: null

 appl_restr: default

 inc_cond: !NotSame && WasTooLong

 rew_action: RewSecondBest

 priority: 0

params:
+ int filter.teamID
- int rew_action.teamID
- int inc_cond["WasTooLong"].iters
+ int iters

P

NotSame

Candidates

RewBest

RewardBest

 filter: Candidates

 exec_cond: null

 appl_restr: default

 inc_cond: NotSame

 rew_action: RewBest

 priority: 0

params:
+ int filter.teamID
- int rew_action.teamID
+ int inc_cond.iters

Priority 0

i1:RewardBest

_global.teamID

global:
int teamID 4572
int iters 2

RotatingPresidency

i2:PreventTooLong

filter.teamID
inc_cond.iters _global.iters

_global.teamID

SecondBestTeamWrk

BestTeamWrk

a:GetTeam b:GetBest

<<initial>> <<final>>

params:
- int a.teamID
- int b.teamID
+ int teamID

Candidates

:Passthru

<<initial>>

<<final>>

:Passthru

b:BestTeamWrk

a:CurrentMgr

params:
- int a.teamID
- int b.teamID
+ int teamID

P

 private static Dictionary<Worker, int> leaderHistory;
...
 if (_ws.Count == 2) {

if (leaderHistory.ContainsKey(_ws.First)){
 leaderHistory.Clear();
 leaderHistory[_ws.Last] = 1;

 }else{
 leaderHistory.Clear();
 leaderHistory[_ws.First] = 1;
}

}else //current manager was also the best
if (leaderHistory[_ws.First]) < iters {
 leaderHistory[_ws.First]++;
 return false;
}

return true;

name: WasTooLong
params: Collection<Worker> _ws (auto)

int iters
output: bool

teamID
teamID

teamID
teamID

S

// Compiled GrGen.NET rule:
rule SET_MANAGER(var teamID:int, var newMgrID:int){
 newMgr:Worker;
 if {newMgr.marked == teamID && newMgr.id == newMgrID;}
 notNewMgr:Worker;
 if {notNewMgr.marked == teamID &&
 notNewMgr.id != newMgrID;}

<-oldRelation:ManagedBy-> notNewMgr;

 negative {notNewMgr-:ManagedBy->newMgr;}

 modify { notNewMgr -:ManagedBy-> newMgr;
delete(oldRelation);

 }
}

name: SET_MANAGER
params: int teamID,
 int newMgrID
output: void

filter.teamID

teamID

teamID

P

IsTeamMember

GetTeam

time_rest: null

temp_spec: default

auxiliary: null

predicate: IsTeamMember

params:
+ int teamID
- int predicate.teamID teamID

sm

P

 return _w.teamMemberships.Contains(teamID);

name: IsTeamMember
params: Worker _w (auto)

int teamID
output: bool

A

Collection<Worker> affected = sm(teamID, _ws.First.ID);
return affected;

name: SetManager
params: Collection<Worker> _ws (auto)

int teamID
output: Collection<Worker>

gm

P

 return _w.teamMemberships.Contains(teamID);

name: IsManager
params: Worker _w (auto)

int teamID
output: bool

 if ((int)_parent.getParam("mgrID") != 0) return;
 foreach (Worker w in _ws) {w.mark(teamID);}

 _parent.setParam("mgrID", gm(teamID));

F
name: GetMgrByRelations
params: Collection<Worker> _ws (auto)

int teamID
output: void

P

 return (_w == GetWrkBestMetric.theBest);

name: IsBest
params: Worker _w (auto)
output: bool

S

// Compiled GrGen.NET rule:
rule MANAGER(var teamID:int):(Node){

manager:Worker;
if { manager.marked==teamID; }
worker:Worker;
if { worker.marked==mark; }
worker -:ManagedBy-> manager;
negative {

otherManager:Worker;
if { otherManager.marked==teamID;}
manager -:ManagedBy-> otherManager;

}
modify {

return (manager.id);
}

}

name: GET_MANAGER
params: int teamID
output: int

F
name: GetWrkBestMetric
params: Collection<Worker> _ws (auto)
output: void

 public static Worker theBest;
 ...
 foreach (Worker w in _ws) { //get latest values
 w.effort = RMod.getWorkerMetric(w, metricName);
 }
 double bestResult = _ws.Max(x => x.effort);
 theBest = _ws.First(x => x.effort == bestResult);

CurrentMgr

a:GetTeam b:GetManager

<<initial>> <<final>>

params:
- int a.teamID
- int b.teamID
+ int teamID

teamID
teamID

P

IsBest

GetBest

time_rest: null

temp_spec: default

auxiliary: GetWrkBestMetric

predicate: IsBest

params:
- string metricName "effort"

F

GetWrkBestMetric

P

F

IsManager

GetMgrByRelations

GetManager

time_rest: null

temp_spec: default

auxiliary: GetMgrByRelations

predicate: IsManager

params:
- int auxiliary.teamID
+ int teamID
- int mgrID

teamID

0

P

NotSame

BestTeamWrk

filter.teamID
inc_cond.iters _global.iters

teamID

teamID

filter.teamID

a:BestTeamWrk b:GetBest

<<initial>> <<final>>

SecondBestTeamWrk

params:
- int a.teamID
- int b.teamID
+ int teamID

teamID
teamID

P

WasTooLong

iters

 if (_ws.Count > 1)
return true;

 else
return false;

P
name: NotSame
params: Collection<Worker> _ws (auto)
output: bool

Fig. 3. Modeling the rotating presidency incentive strategy in pringl. Segment show-
ing the worker filters.

The example requires the definition of four different composite filters, shown
in Figure 3:

1. F CurrentMgr – Returns the current manager of the team. The F a:GetTeam

returns all the workers belonging to the team with the teamID, while the
F b:GetManager uses managerial relationships to determine the manager
among those workers4.

4 While managerial relations in principle need not be stored as a graph, and can thus
be identified much more easily, we still use the graph managerial relations as an

2. F BestTeamWrk – Returns the best individual from a previously identified
collection of workers belonging to a team. The F b:GetBest itself decides
what ‘best worker’ means in this case (see later).

3. F SecondBestTeamWrk – As the name suggests, returns the second best
worker in the team. The filter F a:BestTeamWrk returns the best worker
of the team and passes it forward to the F b:GetBest via a negated edge
(9). This means that F b now receives as input: input(a) \ F a, i.e., in
this particular case the collection of all workers belonging to the team minus
the best worker. Filter b returns the best worker from this collection, and
thus effectively the second best worker of the team.

4. F Candidates – This filter simply uses the previously defined filters Cur-

rentMgr and BestTeamWrk and returns the set union of their resulting collec-
tions. In order to parallelize filters and produce a union without performing
any other additional filtering, we can use as convenience the anonymous,
built-in pass-through filters. They contain no logic, except for a predicate
always returning true. The resulting complex Candidates filter can return
at most two workers.

All composite filters require only one parameter (teamID) and perform pa-
rameter name shortening. They are built by composing these simple filters:

1. F GetTeam – Returns all the workers being listed as belonging to the team
with specified teamID. The filtering is performed by running each of the
workers from the input set against the predicate P IsTeamMember and
including it in the output if fulfilling the predicate.

2. F GetBest – Returns the worker having achieved the highest value of the
‘effort’ metric by invoking the F GetWrkBestMetric and then just formally
matching it with the IsBest predicate.
As we can see, in our example this filter encapsulates and hides the metric it
uses for evaluating the workers. In principle, it would make sense to propa-
gate the metric name upwards and thus make it user-settable, consequently
making the whole scheme more general. However, for readability purposes
we decided not to propagate this parameter in this example. It is interesting
to notice that this filter does not care to which team the evaluated worker
belongs – if used independently, it would try to evaluate all the workers
in the system. This is why we always use it in composite filters, where we
initially restrict its input set with another filter.

3. F GetManager – Invokes a F GetMgrByRelations that performs a graph
query on the team model in abstraction interlayer to determine the manager
within the provided input set of workers. We explain how it works in more
detail in the following Section 2.5.

easily understandable example of how any graph-encoded structural property can
be used in incentive management.

P

s
t
a
t
i
c

D
i
c
t
i
o
n
a
r
y
<
W
o
r
k
e
r
,

i
n
t
>

l
e
a
d
e
r
H
i
s
t
o
r
y
;

.
.
.

i
f

(
_
w
s
.
C
o
u
n
t
(
)

=
=

2
)

{

i
f

(
l
e
a
d
e
r
H
i
s
t
o
r
y
.
C
o
n
t
a
i
n
s
K
e
y
(
_
w
s
.
F
i
r
s
t
(
)
)
)
{

l
e
a
d
e
r
H
i
s
t
o
r
y
.
C
l
e
a
r
(
)
;

l
e
a
d
e
r
H
i
s
t
o
r
y
[
_
w
s
.
L
a
s
t
(
)
]

=

1
;

}
e
l
s
e
{

l
e
a
d
e
r
H
i
s
t
o
r
y
.
C
l
e
a
r
(
)
;

l
e
a
d
e
r
H
i
s
t
o
r
y
[
_
w
s
.
F
i
r
s
t
(
)
]

=

1
;

}

}
e
l
s
e

/
/
c
u
r
r
e
n
t

m
a
n
a
g
e
r

w
a
s

a
l
s
o

t
h
e

b
e
s
t

i
f

(
l
e
a
d
e
r
H
i
s
t
o
r
y
[
_
w
s
.
F
i
r
s
t
(
)
]
)

<

i
t
e
r
s
)

{

l
e
a
d
e
r
H
i
s
t
o
r
y
[
_
w
s
.
F
i
r
s
t
(
)
]
+
+
;

r
e
t
u
r
n

f
a
l
s
e
;

}
r
e
t
u
r
n

t
r
u
e
;n
a
m
e
:

W
a
s
T
o
o
L
o
n
g

p
a
r
a
m
s
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

i
n
t

i
t
e
r
s

o
u
t
p
u
t
:

b
o
o
l

S

/
/

N
o
n
-
c
o
m
p
i
l
e
d

G
r
G
e
n
.
N
E
T

r
u
l
e
:

r
u
l
e

S
E
T
_
M
A
N
A
G
E
R
(
v
a
r

t
e
a
m
I
D
:
i
n
t
,

v
a
r

n
e
w
M
g
r
I
D
:
i
n
t
)
{

n
e
w
M
g
r
:
W
o
r
k
e
r
;

i
f

{
n
e
w
M
g
r
.
m
a
r
k
e
d

=
=

t
e
a
m
I
D

&
&

n
e
w
M
g
r
.
i
d

=
=

n
e
w
M
g
r
I
D
;
}

n
o
t
N
e
w
M
g
r
:
W
o
r
k
e
r
;

i
f

{
n
o
t
N
e
w
M
g
r
.
m
a
r
k
e
d

=
=

t
e
a
m
I
D

&
&

n
o
t
N
e
w
M
g
r
.
i
d

!
=

n
e
w
M
g
r
I
D
;
}

<
-
o
l
d
R
e
l
a
t
i
o
n
:
M
a
n
a
g
e
d
B
y
-
>

n
o
t
N
e
w
M
g
r
;

n
e
g
a
t
i
v
e

{
n
o
t
N
e
w
M
g
r
-
:
M
a
n
a
g
e
d
B
y
-
>
n
e
w
M
g
r
;
}

m
o
d
i
f
y

{

n
o
t
N
e
w
M
g
r

-
:
M
a
n
a
g
e
d
B
y
-
>

n
e
w
M
g
r
;

d
e
l
e
t
e
(
o
l
d
R
e
l
a
t
i
o
n
)
;

}

}

n
a
m
e
:

S
E
T
_
M
A
N
A
G
E
R

p
a
r
a
m
s
:

i
n
t

t
e
a
m
I
D
,

i
n
t

n
e
w
M
g
r
I
D

o
u
t
p
u
t
:

v
o
i
d

s
m

P

v
a
r

t
e
a
m
s

=

(
D
I
C
T
)
_
w
.
G
e
t
D
a
t
a
(
"
t
e
a
m
s
"
,

C
O
M
P
O
S
I
T
E
)
;

r
e
t
u
r
n

t
e
a
m
s
.
C
o
n
t
a
i
n
s
K
e
y
(
t
e
a
m
I
D
.
T
o
S
t
r
i
n
g
(
)
)
;

n
a
m
e
:

I
s
T
e
a
m
M
e
m
b
e
r

p
a
r
a
m
s
:

W
o
r
k
e
r

_
w

(
a
u
t
o
)

i
n
t

t
e
a
m
I
D

o
u
t
p
u
t
:

b
o
o
l

A

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

a
f
f
e
c
t
e
d

=

s
m
(
t
e
a
m
I
D
,
_
w
s
.
F
i
r
s
t
(
)
.
I
D
)
;

r
e
t
u
r
n

a
f
f
e
c
t
e
d
;

n
a
m
e
:

S
e
t
M
a
n
a
g
e
r

p
a
r
a
m
s
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

i
n
t

t
e
a
m
I
D

o
u
t
p
u
t
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

g
m

P

r
e
t
u
r
n

(
(
i
n
t
)
_
p
a
r
e
n
t
.
g
e
t
P
a
r
a
m
(
"
m
g
r
I
D
"
)

=
=

_
w
.
I
D
)
;

n
a
m
e
:

I
s
M
a
n
a
g
e
r

p
a
r
a
m
s
:

W
o
r
k
e
r

_
w

(
a
u
t
o
)

i
n
t

t
e
a
m
I
D

o
u
t
p
u
t
:

b
o
o
l

i
f

(
(
i
n
t
)
_
p
a
r
e
n
t
.
g
e
t
P
a
r
a
m
(
"
m
g
r
I
D
"
)

!
=

0
)

r
e
t
u
r
n
;

f
o
r
e
a
c
h

(
W
o
r
k
e
r

w

i
n

_
w
s
)

{
w
.
m
a
r
k
(
t
e
a
m
I
D
)
;
}

_
p
a
r
e
n
t
.
s
e
t
P
a
r
a
m
(
"
m
g
r
I
D
"
,

g
m
(
t
e
a
m
I
D
)
)
;

F
n
a
m
e
:

G
e
t
M
g
r
B
y
R
e
l
a
t
i
o
n
s

p
a
r
a
m
s
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

i
n
t

t
e
a
m
I
D

o
u
t
p
u
t
:

v
o
i
d

P

r
e
t
u
r
n

(
_
w

=
=

G
e
t
W
r
k
B
e
s
t
M
e
t
r
i
c
.
t
h
e
B
e
s
t
)
;

n
a
m
e
:

I
s
B
e
s
t

p
a
r
a
m
s
:

W
o
r
k
e
r

_
w

(
a
u
t
o
)

o
u
t
p
u
t
:

b
o
o
l

S

/
/

N
o
n
-
c
o
m
p
i
l
e
d

G
r
G
e
n
.
N
E
T

r
u
l
e
:

r
u
l
e

M
A
N
A
G
E
R
(
v
a
r

t
e
a
m
I
D
:
i
n
t
)
:
(
N
o
d
e
)
{

m
a
n
a
g
e
r
:
W
o
r
k
e
r
;

i
f

{

m
a
n
a
g
e
r
.
m
a
r
k
e
d
=
=
t
e
a
m
I
D
;

}

w
o
r
k
e
r
:
W
o
r
k
e
r
;

i
f

{

w
o
r
k
e
r
.
m
a
r
k
e
d
=
=
t
e
a
m
I
D
;

}

w
o
r
k
e
r

-
:
M
a
n
a
g
e
d
B
y
-
>

m
a
n
a
g
e
r
;

n
e
g
a
t
i
v
e

{

o
t
h
e
r
M
a
n
a
g
e
r
:
W
o
r
k
e
r
;

i
f

{

o
t
h
e
r
M
a
n
a
g
e
r
.
m
a
r
k
e
d
=
=
t
e
a
m
I
D
;
}

m
a
n
a
g
e
r

-
:
M
a
n
a
g
e
d
B
y
-
>

o
t
h
e
r
M
a
n
a
g
e
r
;

} m
o
d
i
f
y

{ r
e
t
u
r
n

(
m
a
n
a
g
e
r
.
i
d
)
;

}
}

n
a
m
e
:

G
E
T
_
M
A
N
A
G
E
R

p
a
r
a
m
s
:

i
n
t

t
e
a
m
I
D

o
u
t
p
u
t
:

i
n
t

F
n
a
m
e
:

G
e
t
W
r
k
B
e
s
t
M
e
t
r
i
c

p
a
r
a
m
s
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

s
t
r
i
n
g

m
e
t
r
i
c
N
a
m
e

o
u
t
p
u
t
:

v
o
i
d

s
t
a
t
i
c

W
o
r
k
e
r

t
h
e
B
e
s
t
;

.
.
.

d
o
u
b
l
e

b
e
s
t
R
e
s
u
l
t

=

_
w
s
.
M
a
x
(
x

=
>

(
d
o
u
b
l
e
)
x
.
G
e
t
D
a
t
a
(
m
e
t
r
i
c
N
a
m
e
,

D
O
U
B
L
E
)
)
;

t
h
e
B
e
s
t

=

_
w
s
.
F
i
r
s
t

(
x

=
>

(
d
o
u
b
l
e
)
x
.
G
e
t
D
a
t
a
(
m
e
t
r
i
c
N
a
m
e
,

D
O
U
B
L
E
)

=
=

b
e
s
t
R
e
s
u
l
t
)
;

i
f

(
_
w
s
.
C
o
u
n
t
(
)

>

1
)

r
e
t
u
r
n

t
r
u
e
;

e
l
s
e

r
e
t
u
r
n

f
a
l
s
e
;

P
n
a
m
e
:

N
o
t
S
a
m
e

p
a
r
a
m
s
:
C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

o
u
t
p
u
t
:

b
o
o
l

F
ig
.
4
.

M
o
d
el

in
g

th
e

ro
ta

ti
n
g

p
re

si
d
en

cy
in

ce
n
ti

v
e

st
ra

te
g
y

in
p
r
in
g
l
.

S
eg

m
en

t
sh

ow
in

g
th

e
in

ce
n
ti

v
e

lo
g
ic

.

2.5 Incentive Logic

Incentive logic elements contain the low-level business logic and code that com-
municates directly with the abstraction interlayer. They are shown in Figure 4.
We use C# in this example in all but S elements, which are shown in the
original GrGen.NET rule language5 that eventually also gets compiled into C#
code.

The (auto) parameters are those passed by pringl transparently to the
user, according to the Table 3 in the original paper. All auto-parameters listed
in the table for a given incentive logic type are always passed. Due to space
constraints, we show only those that are used in this example. This is why a P

element is sometimes shown with a single Worker w auto-parameter, while in
other cases we have a Collection<Worker> ws parameter. In reality, both are
always passed, along with other parameters as specified in the table. Apart from
the auto-parameters, the incentive designer is free to use a number of arbitrary
parameters.

Now we describe the functionality of the incentive elements we use in this
example, focusing on the elements whose function is not straightforward.

1. P IsTeamMember – Determines whether a worker belongs to a team.

2. P IsManager – Checks if the currently evaluated worker has the ID previ-
ously determined to belong to the team manager by the GetMgrByRelations
auxiliary.

3. P IsBest – Checks if the currently evaluated worker is the same as the
one identified by the GetWrkBestMetric auxiliary. Differently from how
we do in IsManager, here we do not use the parent’s local parameter to
pass the information, but rather a public static variable GetWrkBestMet-

ric.theBest. This can have as a consequence that an incorrect value can
be read if GetWrkBestMetric is also used for assessing another team at the
same time. However, we do it in this way here purely for demonstrative
purposes.

4. P NotSame – Returns true if the input collection contains two manager
candidates.

5. P WasTooLong – Keeps track of how many times a worker was in the
manager position, and returns true if the worker is not supposed to become
manager in the upcoming iteration. The input collection can contain only 1
or 2 elements, as it gets forwarded from the Candidates filter within the
PreventTooLong IM.

6. F GetWrkBestMetric – Reads the value of the ‘effort’ metric for each
of the passed workers in ws from the abstraction interlayer and updates the
best worker.

5 www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf

www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf

7. F GetMgrByRelations – Prepares the ground for correct execution of the
structural queries by marking the nodes of the graph model in the abstraction
interlayer corresponding to the team members with the appropriate teamID

tag. It then invokes the S GET MANAGER that contains the compiled graph
query matching a graph node that corresponds to the actual manager.

8. A SetManager – A wrapper for invocation of the S SET MANAGER.

9. S GET MANAGER – Contains a compiled non-modifying GrGen.NET graph
query, here expressed in their proprietary rule language. The rule only con-
siders the nodes marked by the teamID tag (see GetMgrByRelations). The
rule matches and returns a node that other nodes point to via ManagedBy-
typed relations, and that itself is not managed by another team member.

10. S SET MANAGER – Contains a compiled modifying GrGen.NET graph query,
here expressed in their proprietary rule language. The rule only considers the
nodes marked by the teamID tag (see GetMgrByRelations). It matches the
old and the new manager, and re-chains the ManagedBy relations to point to
the new manager node.

3 Discussion

3.1 Composability, Reusability and Ease of Use

Filters like GetTeam, GetBest and GetManager perform very common incentive
functionality (business logic). In practice, this means that we can expect to have
such components available as library elements. Of course, if we need to use a
company-specific auxiliary or predicate, we can easily replace the default
one with a proprietary element. For example, a F GetManager may be available
with a default auxiliary F that looks for a manager in the team model by
inspecting the node tags for a given manager tag. In that case, we may want to
exchange the default, tag-based F with a structural one, such as GetMgrByRe-
lations. Once we have simple filters available, composing more complex ones
can be done in a matter of minutes by purely visual modelling.

The two rewarding actions we employ here are very similar. Once we model
one of them, the other one can be created by copy-pasting and connecting a
different filter. The action logic A for installing a new manager is also a
common piece of incentive logic that can be implemented in different flavors and
provided as a library element.

All these elements can be put to use in IM definitions, where we can eas-
ily interchange different filters and rewarding actions, or tweak parameters to
obtain specific incentive mechanisms we want. For example, the A RewBest

can use a completely different action logic A to reward the best workers –
for example to pay out money instead of changing team managers. This allows
partial adaptations of the incentive strategy.

The same principle can be applied at the incentive scheme level. For example,
a company that applies the rewarding strategy of always awarding the team

leadership to the best performing worker would only need the IM RewardBest in
the scheme. If later it decided to switch to the rotating presidency (i.e., to limit
the number of consecutive terms) it would just need to augment the old scheme
with another IM – PreventTooLong. It is easy to imagine how other constraints
could be added.

3.2 Structural Incentives

Incentive schemes in use today usually neglect the relationships between workers,
both when assessing workers, and when awarding them[1]. However, a worker’s
performance can often be better understood if considered in the context of his
surroundings and collaborations (collaborators). At the same time, measures
like:

– placing a worker to work with different co-workers
– offering a different place in the organizational hierarchy
– introduction of new collaborative patterns
– introduction communication methods

all can have a significant motivational impact on the worker[1]. This is why
pringl supports formally specifying such structural incentive measures. In [2]
we presented the rewarding framework princ whose component RMod provides
the abstraction interlayer functionality for pringl. RMod models the workers
and their relations as a multi-graph. The graph model was chosen as the most
generic one, yielding an opportunity to map it into different company-specific
models. At the same time, this graph model gives us the opportunity to explore
modeling structural incentives. We use a well-known tool (GrGen) and estab-
lished techniques for graph rewriting as the basis for our structural incentives.
In this example we showed a small example of how they can be performed. They
will be in the focus of our future work.

References

1. Scekic, O., Truong, H.L., Dustdar, S.: Incentives and rewarding in social computing.
Communications of the ACM 56(6) (June 2013) 72–82

2. Scekic, O., Truong, H., Dustdar, S.: Programming incentives in information systems.
In: Int. Conf. on Advanced Inf. Sys. Engineering CAiSE’13. (2013) 688–703

	PRINGL Example – Rotating Presidency

