
Towards Recovering the Broken SOA Triangle – A Software
Engineering Perspective

Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin Treiber, Schahram Dustdar
VitaLab, Distributed Systems Group

Vienna University of Technology
Argentinierstrasse 8/184-1, 1040 Wien, Austria

{anton,florian,platzer,treiber,dustdar}@infosys.tuwien.ac.at

ABSTRACT
Service-oriented computing (SOC) receives a lot of atten-
tion from academia and industry as a means to develop
flexible and dynamic software solutions. Facing the facts,
service-oriented solutions are by far not as dynamic and
adaptable as they claim to be. The initial idea of the SOA
triangle to publish-find-bind-execute a service is often not
implemented as envisioned due to a number of missing or
wrongly-used concepts. In our ongoing VReSCO project,
a service-oriented infrastructure is being developed which
aims at solving a number of grand challenges currently ev-
ident in the SOC community. In this paper we present our
initial work on providing a reasonable basis that addresses
the issues of dynamic binding and invocation by leveraging
a flexible solution based on notifications.

1. INTRODUCTION
During the last few years, Service-oriented Computing [9]

has become an attracting research area to put forward a new
paradigm for mastering the complexity of distributed appli-
cations by using loose coupling, platform independent inter-
face descriptions and well-established standards. Service-
oriented architecture (SOA) is a means for capturing these
principles by providing an architectural model for develop-
ing service-oriented applications. A reasonable technology
for implementing SOAs are Web services [1, 17]. In the
last few years, Web services evolved from an RPC-centric
model to a messaging-based communication model built on
SOAP (Simple Object Access Protocol) [19]. There is still
an ongoing debate within different communities whether to
see Web services from an RPC or message-centric point of
view. We believe that Web services should implement a
messaging-based model to achieve its well-known benefits
like loose coupling and a certain degree of version tolerance.
RPC-centric Web services do not benefit from the SOA ad-
vantages in terms of architectural flexibility and result in
Web services being just another distributed object technol-
ogy [16] (compared to CORBA, Java RMI, etc).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IW-SOSWE ’07, September 3, 2007, Dubrovnik, Croatia
Copyright 2007 ACM ISBN 978-1-59593-723-0/07/09 ...$5.00.

The basic SOA model considers three main elements as
shown in Figure 1(a). The service provider implements a
given service and publishes the service description in a ser-
vice registry. The service consumer queries the registry to
find a certain service. If found, it retrieves the location of
the service and binds to the service endpoint, where the
consumer can finally invoke the operations of the service.

Service
Contract

Service
Registry

Service
Provider

Service
Requestor Bind

RegisterFind

(a) SOA Theory

Service
Contract

Service
Provider

Service
Requestor Bind

(b) SOA Practice

Figure 1: Basic SOA Model – Theory vs. Practice

By implementing the SOA triangle, one could gain flexi-
ble solutions with respect to manageability and adaptivity
of software systems. In practice however, software systems
hardly ever implement the publish-find-bind-execute cycle as
proposed by the SOA triangle. In Figure 1(b), we have de-
picted the current model as used in most of today’s SOA
applications. The current model solely consists of service
provider and service requestor. This implies that the ser-
vice requestor has to know the exact endpoint address of a
service and has to generate a proxy to invoke the service.
This is all done in a static way which does not conform to
the basic principles of service-orientation. Building systems
in such a way does not result in easily adaptable architec-
tures and loosely-coupled systems. On the contrary, service
providers and service requestors are tightly coupled. Chang-
ing the service endpoint address for instance, results in an
unrecoverable application error.

In this paper, we identify a distinct number of reasons,
why we believe that the basic SOA model cannot be imple-
mented seamlessly with the currently available frameworks
and tools. Due to space constraints we focus mainly on
reasons related to the areas of dynamic binding and invo-
cation as they represent two crucial core areas of service-
orientation. We argue from a software engineering point
of view that the implementation of the SOA triangle re-
quires a service infrastructure and a set of programming
interfaces that support application developers in building
highly-scalable and dynamic SOA applications without the
need to take care of the numerous Web service specifications.

PARTNER 2

Shipping
Service

PARTNER 1
CreditCard
Payment
Service

TELCO 2

Service
Registry

S
O

A
In

fra
st

ru
ct

ur
e

TELCO 1

Public Services

Customer Services

Service
Registry

S
O

A
In

fra
st

ru
ct

ur
e

Order
Processing
Application

Billing
Information

Contract
Switching

Rate/Roaming
Information

Service

PARTNER 3

Supplier
Service

Inhouse Services

CRM
Services

ERP
Services

Order
Management

Services

Billing
Services

Mobile
Operations
Services

Partner Services

Telephone
Number
Porting

Roaming
Service

TELCO 3

Service
Registry

S
O

A
 In

fra
st

ru
ct

ur
e

Partner Services

Telephone
Number
Porting

Roaming
Service

Figure 2: TELCO Case Study Architecture

We present the first results of our ongoing work in building
such a service infrastructure.

The remainder of this paper is organized as follows: Sec-
tion 2 presents an illustrating example where dynamic bind-
ing and invocation can be applied in a meaningful way within
the SOA context. Section 3 discusses the state of the art
concerning these issues. Section 4 introduces our design ap-
proach for dynamic binding and invocation in the VReSCO
project. Section 5 positions our work among related ap-
proaches and Section 6 concludes the paper.

2. ILLUSTRATING EXAMPLE
In our illustrating example, we consider a telecommuni-

cation company (TELCO) that consists of multiple depart-
ments. This company provides different kinds of services to
different kinds of service requestors: Inhouse services are
shared among the different departments (e.g., CRM ser-
vices, billing services, etc.). Furthermore, customer services
are only used by customers (e.g., view billing information,
send SMS messages, etc.) whereas public services may be
accessed by everyone (e.g., order new mobile, query infor-
mation about phone and roaming charges, etc.). Finally,
partner services are used by partners and competitors (e.g.,
telephone number porting, roaming services, etc.).

The architecture of our case study is illustrated in Fig-
ure 2. TELCO 1 provides inhouse services, customer ser-
vices, and public services via the SOA Infrastructure and
the Service Registry. In addition, there are two competitors
TELCO 2 and TELCO 3 that provide partner services for
telephone number porting and roaming services. Moreover,
several partners provide external services such as credit card
payment services, shipping services, and supplier services.

To define a realistic scenario for our case study, we con-
sider the ordering of a new mobile phone which is done us-
ing the Order Processing Application. After creating an or-
der, the personal details of the user are added to the CRM
database using the CRM services, and a new contract is cre-
ated. In case of an existing customer, the contract details
are updated. In the meanwhile, the provider verifies if the
ordered mobile phone is currently in stock. If not, the phone
is ordered using the supplier service of the partner. After

successfully registering the new SIM card, the bill is created
via the billing service. Finally the phone is shipped using
the shipping service of the partner.

To be more concrete, we further consider the sub-process
of telephone number porting which has been used as a case
study to illustrate testing of SOAs in [2]. Mobile Number
Portability is enforced by the European Union and enables
customers to change the telecommunication service provider
without losing their current phone number.

Figure 3 shows this sub-process in detail. First of all,
TELCO 1 queries the CRM database to get the name of
the customer that wants to port the phone number. To per-
form a successful number porting, the new service provider
of the customer has to request the porting at each national
competitor (which we assume are two). These requests are
sent asynchronously to the competitors, which then notify
the requestor if the porting was successful. If all competi-
tors acknowledge this request, the changes can be executed.
Clearly, these actions should be done within the scope of a
transaction to guarantee the ACID properties. If the num-
ber porting was successful, TELCO 1 updates the CRM
database by inserting the new phone number of the cus-
tomer, as well as the billing information by adding a port-
ing service fee. Finally, the customer receives a confirmation
SMS that the new number is now active.

We hark back to this case study in the following sections,
when describing current problems in SOA, as well as our
approach to overcome these issues.

3. CURRENT PROBLEMS AND ISSUES
In this section, we address some of the current problems

and issues we observed in the SOA model.

3.1 Web Service Registries
One significant problem with SOA relates to the short-

comings of current Web service registries, especially the two
standardized efforts Universal Description Discovery and In-
tegration (UDDI) [6] and ebXML [5]. Both approaches have
gone through long running standardization processes and
are broadly accepted as “the standards” for Web service reg-
istries. However, in practice, ebXML is used only in some

SMS ServiceTELCO1 Billing Service TELCO2CRM Service

getCustomerName

customerName

NumberPorting_OK

NumberPorting_OK

updateCustomerData(customerName)

updateCustomerData_OK

requestNumberPorting(customerName)

requestNumberPorting(customerName)

TELCO3

updateBillingInformation(customerName)

updateBillingInformation_OK

sendConfirmationSMS(customerName)

sendConfirmationSMS_OK

Figure 3: Telephone Number Porting

vertical industries, and UDDI is rarely used. This is high-
lighted by the fact that IBM, Microsoft, and SAP have shut
down their public UDDI registries in 2005.

We presented a detailed analysis of Web service registries
in [3]. Besides the missing support for dynamic binding,
we identified additional shortcomings of current registry ap-
proaches that hamper the full utilization of the SOA trian-
gle. Among others, support for notifications, compositions,
dynamic searching and querying are included. However, in
this paper we mainly focus on dynamic binding and invoca-
tion.

3.2 Dynamic Binding
In general, dynamic binding (or late binding) is the pro-

cess of linking an abstract service to a concrete service in-
stance at execution time. Ideally, this should be handled
transparently for the application developer. Dynamic bind-
ing in service-centric systems is mostly used in combination
with runtime service discovery. This means that the service
consumer tries to find a service matching a given criteria.
Based on the available services, the consumer selects the
service that best fulfills her constraints – for instance, func-
tionality or Quality of Service (QoS) – and binds to the
service dynamically at runtime. Since, the QoS may change
over time, it might be necessary to re-bind to another, func-
tionally identical service (e.g., due to a better QoS).

Considering the number porting process of our example,
there are two scenarios where dynamic binding plays an im-
portant role. Firstly, the TELCO should dynamically bind
to the services of its competitors, for instance when select-
ing the number porting service of the competitor. We refer
to such kind of binding as content-based dynamic binding.
Due to the fact that the number porting interfaces will not
match exactly among the competitors, a set of conversion
rules is used to handle this heterogeneity.

Another important aspect is the use of QoS information
for the selection and dynamic binding of certain Web ser-
vice instances [20], which we refer to as QoS-based dynamic
binding. This can be used for performance intensive oper-
ations, e.g., mobile operation services such as sending SMS
and MMS. The latter are usually highly demanded services
by mobile customers. In our case study, QoS-based dynamic
binding is used when sending the confirmation SMS of the

number porting. To achieve this kind of dynamic binding,
a distinct number of service instances are running on one
or more hosts. Furthermore, a QoS monitor (as developed
in our previous work [14]) constantly monitors the QoS at-
tributes of these services. The dynamic binding mechanism
is then used to select a specific service instance which best
fits according to the selection strategy. We present the de-
tails of both approaches in Section 4.

Considering the state of the art, existing Web service reg-
istry approaches claim to allow dynamic binding. In fact,
dynamic binding is not natively supported. A service re-
questor can search the registry based on certain criteria and
then retrieve the endpoint of the service. However, the main
advantage of dynamic binding is endpoint transparency.� �

1 // Query the r e g i s t r y for a se rv i ce with the
2 // given name and given QoS va lues
3 l i s t = query (”Messag ingServ ice ” , 500 , 0 . 9) ;
4
5 // s e l e c t one se rv i ce
6 serv iceToInvoke = s e l e c tB e s t S e r v i c e (l i s t) ;
7
8 try {
9 invokeSe rv i c e (serv iceToInvoke ,

10 ”sendSMS” , arguments) ;
11 } catch (Serv i ceExcept ion e}
12 // something went wrong : re−query UDDI
13 // and try to invoke another se rv i ce
14 }� �
Listing 1: Dynamic Binding Example with UDDI

Listing 1 shows a pseudo-code example for QoS-based dy-
namic binding using UDDI. The query() method in line 4
queries the UDDI registry for a service with the given name.
Furthermore, it takes two other parameters, the maximal
response time of a service and the minimal availability re-
quired from the service provider. The QoS attributes of
each service are stored in a tModel which is associated with
the service as described in [13]. The method for querying is
about 30 lines of code and cannot be simply reused, since
QoS is not a first-class citizen in UDDI.

The passiveness of dynamic binding with UDDI becomes
evident especially when a service invocation exception oc-
curs (line 11) and dynamic rebinding becomes necessary.

The main concern is that the client is responsible for taking
all required actions (e.g., re-querying the registry for new
service bindings, polling the registry for possibly new ser-
vices, etc.). Furthermore, selecting the best service (line 6)
and dynamically invoking it (line 9–10) cannot be done as
easy as shown here for demonstration purposes. It is up to
the client to select and invoke the best service. The main
drawback of this approach is the fact that it involves a lot of
client-side code since current registries (and their APIs) do
not provide support for implementing such dynamic bind-
ing. Although we only use UDDI for illustration purposes,
the same problems related to dynamic binding and invoca-
tion are also inherent to ebXML.

3.3 Dynamic Invocation
Dynamic invocation represents an issue closely related to

dynamic binding. Web services are typically invoked in a
static manner, that means, stubs are generated from service
descriptions in WSDL and then used to invoke service op-
erations. The main drawback of this approach is the lack
of dynamism. In some cases (e.g., when invoking a service
returned from a service discovery query) it should be pos-
sible to invoke the service just by using its endpoint, the
operation name and the required input message. Current
Web service technologies do not provide an elegant way to
use such a dynamic invocation.

Per definition, Web services exchange SOAP messages,
either in a synchronous or asynchronous manner. Neverthe-
less, when looking at existing Web service implementations,
RPC-style interactions with previously generated stubs are
currently predominant. However, this was not the initial
idea of SOA. In contrast, the current use of Web services
leads to inflexible applications which are specified at design
time and cannot be changed at runtime.

The Apache Web Service Invocation Framework (WSIF)1

provides a way to perform dynamic invocation of Web ser-
vices. However, the framework provides only limited sup-
port and is basically only applicable for simple services.

4. THE VReSCO APPROACH
In this section we describe the initial work on our ap-

proach for efficiently implementing service-based applica-
tions. Firstly, we present an overview of the VReSCO
infrastructure and its architecture. The VReSCO project
aims at addressing some of the current challenges in SOC [8].
This paper presents our initial steps since many of these in-
frastructure components are currently work in progress. Sec-
ondly, we focus on two general issues for developing service-
oriented applications, namely dynamic binding and invoca-
tion and how we are able to solve it using VReSCO.

4.1 Overall Architecture
The main goal of VReSCO is to provide an infrastruc-

ture (through a client-side API) to application developers
that enables efficient and flexible development of service-
oriented applications without bothering the developer with
all the details of numerous Web service specifications such
as UDDI. Furthermore, it provides a flexible infrastructure
that allows to cope with many deficiencies of existing frame-
works, namely the lack of dynamism as required to imple-
ment SOAs [8]. The client-side library transparently handles

1http://ws.apache.org/wsif

VReSCO Infrastructure

Registry
Database

Publishing
Interface

Metadata
Interface

Query
Interface

Composition
Interface

Composition
Engine

Query
Engine

Notification
Interface

QoS Monitor

ORM
Layer

Subscription
Engine

VReSCO
Client
Library

Client
Program

SOAP

Binding
Interface

Binding
Engine

Figure 4: VReSCO Architecture

the SOAP communication with the VReSCO infrastructure
and its services which include, among others, publishing,
searching, querying and composing services. The overall ar-
chitecture of VReSCO is depicted in Figure 4.

The most important VReSCO services provided to the
application developer are:

• Publishing and Metadata Service: It is used for
static and dynamic publishing of services with its in-
terface description and associated metadata. Static
publishing is done using a Web page as front-end for
the service. Dynamic publishing is done at runtime
and makes a service immediately available for oth-
ers within the infrastructure. Metadata includes func-
tional attributes (e.g., operations, messages, pre- and
post-conditions) and non-functional attributes such as
domain-specific information, performance and depend-
ability (e.g., response time, availability, etc) as pro-
posed in [14].

• Searching and Querying Service: It allows to que-
ry and search for available services published within
the infrastructure. Querying enables to find exact mat-
ches of the query string in service descriptions and its
non-functional attributes (e.g., QoS), whereas search-
ing allows to find services using full text queries with
fuzzy matches (see our previous work in [12]).

• Binding and Invocation Service: Issuing a query
at runtime requires the ability to dynamically bind to
the returned service. After the binding, an invocation
can be performed. The provided service is well-suited
to support the application developer to transparently
handle these aspects. The find-bind-execute cycle of
the basic SOA model leads to flexible applications by
providing full transparency of the concrete services the
application is bound to. We present more details on
binding and invocation below.

• Notification Service: Notifications play a central
role in SOAs, although there are not very explicit.
This service allows the developer to register for receiv-
ing different events: i) when new services in specific
categories are available, ii) when the QoS of a service
changes below or above a given threshold, iii) when
the service interface has changed. The use of notifica-
tions is transparent in the sense that the client library
handles the creation of local endpoints to receive noti-
fications from VReSCO if an event occurs.

• Composition Service: Composing services is a cru-
cial area within the SOC community. The VReSCO
infrastructure is coupled with an orchestration engine
to achieve a composition of services by letting the user
specify composition requests in a domain specific lan-
guage (DSL) which is currently investigated. The in-
formation encoded in the DSL is then used and match-
ed with the services available within VReSCO. This it-
erative and semi-automated composition development
process allows a stepwise refinement of the composition
until it is deployable. This refinement also includes
the development of missing services or necessary data
transformations.

The VReSCO services are provided as normal Web ser-
vices with WSDL interfaces, and designed to interact with
a client-side library. They are therefore not foreseen to be
invoked by the developer himself, i.e. the latter merely uses
a set of API classes. The main reason for providing a client-
side library is the ease of use for the developer without the
need to generate stubs for the infrastructure services, create
endpoints for receiving notifications, etc. All these aspects
are handled by the client library, which is available for two
main platforms, Java and C#/.NET. In addition, it is also
possible to use the VReSCO services directly, for example
on other platforms such as Ruby, Python or any other lan-
guage. Of course, this is not as comfortable as having a
client-side API but it is not a limitation.

Besides the provided infrastructure services, a number of
other components are needed for the implementation of the
services. A central part is the Registry Database and the
ORM Layer (Object Relational Mapping) for accessing the
registry database. Based on the reasons provided in Sec-
tion 3, we currently do neither use UDDI nor ebXML. In-
stead, we use our own data model for persisting the services
and their metadata. The registry itself is only accessed us-
ing our infrastructure services and not directly from outside,
which allows us to use an efficient and extensible data model
with our database of choice.

Another central component is the QoSMonitor for mea-
suring the performance and dependability related attributes.
Our approach presented in [14] implements a client-side ap-
proach based on a low-level TCP analysis. This implies that
no access to the service implementation is required for per-
forming the measurements. Other components include a
Query Engine, a Composition Engine and a Subscription
Engine which are out of scope of this work and therefore
not described in more detail.

The VReSCO system is currently being implemented on
top of the Microsoft Windows Communication Foundation
(WCF)2, which is a set of APIs to build and host service-
oriented applications. Moreover, we use the object relational
mapping tool NHibernate3 for persisting services and their
metadata in the registry database.

4.2 Dynamic Binding and Invocation
Achieving dynamic binding requires a strong support from

the VReSCO infrastructure. As described in Section 3, we
distinguish two cases of dynamic binding within an applica-
tion, QoS-based and content-based dynamic binding.

2http://wcf.netfx3.com/
3http://www.nhibernate.org/

QoS-based Dynamic Binding.
The main idea is the transparent dynamic binding to a

concrete service according to some QoS criteria. The crite-
ria are specified when issuing the query for a given service
to the VReSCO runtime. Listing 2 shows the usage of dy-
namic binding with VReSCO using our case study intro-
duced in Section 2. In line 1, a binding listener is registered
at the VReSCO proxy (identified by the vresco instance)
to receive notifications when new services match the query
in line 2–5. As explained above, the query language allows
to specify QoS parameters and a query model. In this case,
QueryMode.Relaxed means that if the query cannot find a
service with the appropriate QoS values, the registry should
return the service that best fits the given criteria.� �

1 vresco . r e g i s t e rB i nd i n gL i s t e n e r (t h i s) ;
2 s e r v i c e = vresco . query (”Messag ingServ ice ” ,
3 ”QoS . ResponseTime <= 500ms
4 and QoS . Ava i l a b i l i t y > 0 .9 ” ,
5 QueryMode . Relaxed) ;
6 vre sco . se tReb ind ingStrategy (
7 BindingStrategy . UpdateOnBetterMatch) ;
8 ServiceProxy proxy =
9 vresco . c r ea teServ i c eProxy (s e r v i c e) ;

10 proxy . sendMessage (”sendSMS”) ;� �
Listing 2: Dynamic Binding with VReSCO

Another remarkable point is the rebinding strategy which
is defined in line 6–7. This specifies to rebind to another
service with better QoS if one gets available that matches
our query. This rebinding is transparent and triggered by a
change in the perceived QoS. In line 8–9, the service proxy
that is necessary to achieve this level of transparency is gen-
erated by the VReSCO infrastructure. Finally, the service
is invoked using the service proxy in line 10.

Content-based Dynamic Binding.
To achieve content-based dynamic binding a mapping be-

tween some application logic and a distinct service has to
be provided. For instance, considering the case study in
Section 2, a number of external and partner services are
available and published in the VReSCO registry. In order
to achieve a transparent dynamic binding to the TELCO
telephone number porting services, we need to establish a
mapping between the service category and the service iden-
tifier used in the application code. An example query for
generating a service proxy for the telephone number porting
service for TELCO 2 could be:

vresco . query (Par tne rServ i c e . PhoneNumberPorting ,
Port ingProv ider .TELCO2) ;

Prior to issuing this query, the VReSCO infrastructure
needs to know the mapping from the PartnerService and
PortingProvider parameters to the concrete services in the
registry. This can be configured by adding metadata to each
telephone number porting service, in this case the category
(PhoneNumberPorting) and the service provider identifica-
tion (TELCO2).

When a telephone number needs to be ported, each pro-
vider must be informed. Thus, it is often desired to hide the
differences of the available service interfaces in the same cat-
egory by letting the service proxy handle the heterogeneity
transparently. This aspect is handled using a set of conver-
sion rules that describe how the input and output messages
of services in a specific category need to be transformed by

VReSCO Infrastructure Service SideClient Side

Binding EngineVReSCO Client SMS-Service1VReSCO Infrastructure

Service Proxy

query

Query Engine

query

return service proxy

setRebindingStrategy

setRebindingStrategy

createServiceProxy

new

sendMessage

sendMessage

sendMessage_OK

sendMessage_OK

registerBindingListener

registerBindingListener

SMS-Service2

notify

rebind

sendMessage

sendMessage

sendMessage_OK

sendMessage_OK

Service
goes down

sendMessage

query

return results

Figure 5: VReSCO Dynamic Binding

the service proxy. The service proxy can then be used uni-
formly for each service in the same category. The input and
output message understandable by the service proxy have to
be specified as additional metadata to the service category.
For each service in the service category, conversion rules for
converting messages to the messages understandable by the
service proxy have to be added as metadata. This infor-
mation is further used by the service proxy to dynamically
invoke the service.

The conversion rules are specified using XSLT (or alter-
natively XQuery) in the first version of our implementation.
On execution, the proxy receives the uniform XML mes-
sage, also defined as metadata for each group of services,
and based on the current service binding it executes the
corresponding rule to transform the message and redirect it
to the original service. To enhance the performance of this
mediation step, the XLST stylesheets are compiled which
keeps the overhead at the minimum. Due to space restric-
tions, the concrete syntax and execution of these conversion
rules are not described in more detail.

Dynamic Binding in Detail.
The detailed dynamic binding process is illustrated in Fig-

ure 5 which shows the interaction of client- and service-side
with the VReSCO infrastructure. VReSCO clients use the
provided API to register a binding listener, query for ser-
vices fulfilling some given constraints, and setting the re-
binding strategy as explained above. The VReSCO infras-
tructure forwards these requests to the responsible compo-
nents, which are the Binding Engine and Query Engine,
respectively. Accordingly, the client creates a service proxy
which is then used to invoke the concrete service instance.
Now consider that SMS-Service1 goes down and is not avail-
able any more. In this case, the service proxy can no longer
reach the bounded service instance. Therefore, at the next

service invocation, a notification is sent to the Binding En-
gine using the registered binding listener. On being noti-
fied, the Binding Engine uses the Query Engine to query
the registry for matching services, and then rebinds to an
alternative service according to the current rebinding strat-
egy. Finally, the service proxy uses SMS-Service2 for the
service invocation.

5. RELATED WORK
Pautasso and Alonso [10] discuss several different binding

models for (Web) services, as well as different points in time
when the bindings are evaluated. The motivation of their
work is the shortcoming of current composition languages
such as WS-BPEL [7]. In WS-BPEL, dynamic binding is
supported by re-assigning endpoints using the partnerLink

construct. Endpoints represent specific ports of a service
interface at runtime which are usually identified using WS-
Addressing [18]. However, dynamic binding in WS-BPEL
can only be achieved if the interfaces of the different services
are identical, which limits the flexibility of this approach.
The authors present a flexible binding model using their
JOpera system. In this approach, binding is done using
reflection and therefore does not require a specific language
construct.

Di Penta et. al. [11] present the WS-Binder framework
for enabling dynamic binding within BPEL processes. They
distinguish between three different types of binding mech-
anisms: Pre-execution workflow global binding occurs prior
to the execution of a composition and is done using genetic
algorithms. Run-time local binding allows to select service
bindings while the composition is already running. Finally,
run-time workflow slice re-binding stops the execution of the
composition in case of an error (e.g., service is not available
or QoS values are not as desired), and determines the work-

flow slice still to be executed using global binding. This
approach is built on top of WS-BPEL and uses proxies to
separate the abstract services with the concrete services in-
stances. Both approaches have in common that they rather
focus on dynamic binding with respect to composition envi-
ronments and do not focus on the binding at the core SOA
level as addressed by our approach.

The latter work is part of a larger platform which was de-
veloped within the scope of the European project SeSCE4.
Other activities in this project have been done in the area
of service discovery [4, 15]. The authors distinguish between
three types of service discovery. Early service discovery oc-
curs in the requirements engineering phase and is driven by
the requirements specification. Architecture-driven service
discovery is done during the design phase and is driven by
the specification of functionality, quality attributes and con-
straints. Finally, runtime service discovery deals with the
discovery and replacement of services at runtime. In con-
trast to our work, the approach presented in [15] focuses on
runtime monitoring the compliance of service-centric sys-
tems to requirements and discovering alternative services
at runtime, whereas dynamic binding is not explicitly ad-
dressed.

6. CONCLUSIONS
In this paper we address one fundamental shortcoming

of today’s SOA implementations, namely, dynamic binding
and invocation. We illustrate the set of today’s challenges by
utilizing an example based on which those shortcomings are
analyzed henceforth. SOAs had foreseen the publish-find-
bind cycle (SOA triangle), whereas as today, most SOA im-
plementations use (for practical reasons) only the interaction
between service requestor and service provider with service
contracts. This, of course, limits the envisaged potential of
SOA implementations considerably. In our research project
VReSCO we provide a client-side API to allow for dynamic
binding and invocation of services to solve many of today’s
problems related to dynamic binding and invocation and its
relationship to registries. In this paper we discuss those im-
plemented parts of our infrastructure which can be of help
when building large-scale SOAs requiring dynamic binding
and invocation.

7. REFERENCES
[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.

Web Services – Concepts, Architectures and
Applications. Springer Verlag, 2004.

[2] S. Dustdar and S. Haslinger. Testing of
Service-Oriented Architectures - A Practical
Approach. In 5th International Conference on
Object-Oriented and Internet-Based Technologies,
Concepts, and Applications for a NetworkedWorld
(Net.ObjectDays 2004), pages 97–109, Sept. 2004.

[3] S. Dustdar and M. Treiber. A View Based Analysis on
Web Service Registries. Distrib. Parallel Databases,
18(2):147–171, 2005.

[4] A. Kozlenkov, G. Spanoudakis, A. Zisman,
V. Fasoulas, and F. Sanchez. Architecture-driven
Service Discovery for Service Centric Systems.
International Journal of Web Service Research,
4(2):82–113, 2007.

4http://secse.eng.it/pls/secse/

[5] OASIS International Standards Consortium. ebXML
Registry Services and Protocols v3.0, Mar. 2005.

[6] OASIS International Standards Consortium. Universal
Description, Discovery and Integration v3.0 (UDDI),
Feb. 2005.

[7] OASIS International Standards Consortium. Web
Service Business Process Execution Language v2.0
(WS-BPEL), 2006.

[8] M. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-Oriented Computing Research
Roadmap, 2006. http:
//infolab.uvt.nl/pub/papazogloump-2006-96.pdf

(Last accessed: May 31, 2007).

[9] M. P. Papazoglou. Service-Oriented Computing:
Concepts, Characteristics and Directions. In
Proceedings of the Fourth International Conference on
Web Information Systems Engineering, pages 3–12,
Dezember 2003.

[10] C. Pautasso and G. Alonso. Flexible Binding for
Reusable Composition of Web Services. In Proceedings
of the 4th International Workshop on Software
Composition (SC’2005), Edinburgh, UK, pages
151–166, 2005.

[11] M. D. Penta, R. Esposito, M. L. Villani, R. Codato,
M. Colombo, and E. D. Nitto. WS Binder: a
Framework to enable Dynamic Binding of Composite
Web Services. In Proceedings of the International
Workshop on Service-oriented Software Engineering
(SOSE’06), pages 74–80, 2006.

[12] C. Platzer and S. Dustdar. A Vector Space Search
Engine for Web Services. In Proceedings of the 3rd
European IEEE Conference on Web Services
(ECOWS’05), 2005.

[13] S. Ran. A model for web services discovery with QoS.
SIGecom Exchanges, 4(1):1–10, 2003.

[14] F. Rosenberg, C. Platzer, and S. Dustdar.
Bootstrapping Performance and Dependability
Attributes of Web Services. In Proceedings of the
IEEE International Conference on Web Services
(ICWS’06), Chicago, USA, Sept. 2006.

[15] G. Spanoudakis, A. Zisman, and A. Kozlenkov. A
Service Discovery Framework for Service Centric
Systems. In Proceedings of the IEEE International
Conference on Services Computing (SCC’05), pages
251–259, 2005.

[16] W. Vogels. Web services are not distributed objects.
IEEE Internet Computing, 7(6):55–66, 2003.

[17] S. Weerawarana, F. Curbera, F. Leymann, T. Storey,
and D. F. Ferguson. Web Services Platform
Architecture : SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging,
and More. Prentice Hall PTR, 2005.

[18] World Wide Web Consortium (W3C). Web Service
Addressing, 2004.

[19] World Wide Web Consortium (W3C). Simple Object
Access Protocol v1.2 (SOAP), 2007.

[20] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms
for Web services selection with end-to-end QoS
constraints. ACM Transactions on the Web, 1(1):6,
2007.

