
Comprehensive QoS Monitoring of Web Services and
Event-Based SLA Violation Detection

Anton Michlmayr, Florian Rosenberg, Philipp Leitner, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstrasse 8/184-1, 1040 Wien, Austria
lastname@infosys.tuwien.ac.at

ABSTRACT
In service-oriented systems, Quality of Service represents an
important issue which is often considered when selecting and
composing services. For receiving up-to-date information,
non-functional properties such as response time or availabil-
ity can be continuously monitored using server- or client-
side approaches. However, both approaches have strengths
and weaknesses. In this paper, we present a framework that
combines the advantages of client- and server-side QoS mon-
itoring. It builds on event processing to inform interested
subscribers of current QoS values and possible violations of
Service Level Agreements. These events can trigger adaptive
behavior such as hosting new service instances if the QoS is
not as desired. We describe our QoS monitoring approach
in detail, show how it was integrated into the VRESCo ser-
vice runtime environment, and evaluate the accuracy of the
presented monitoring techniques.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
C.4 [Performance of Systems]: Measurement techniques

General Terms
QoS Measurement, Performance, Reliability

1. INTRODUCTION
In the past few years, Service-oriented Architecture (SOA)

and Service-oriented Computing (SOC) [9] have emerged as
a paradigm for addressing the complexities of distributed
applications, and have finally gained acceptance from both
industry and research. The overall idea is based on well-
established standards for loose coupling and platform-inde-
pendent interface descriptions. Web services represent the
most common realization of SOA that build on the main
standards SOAP and WSDL. Over time, several standards
and specifications have been introduced for different issues
in Web services research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’09, November 30, 2009, Urbana Champaign, Illinois, USA
Copyright 2009 ACM 978-1-60558-848-3/09/11 ...$10.00.

Quality of Service (QoS) plays a crucial role in service-
oriented systems, for instance during service selection. When
integrating external services into business processes, it is
important to consider the quality guarantees of the service
provider. Therefore, Service Level Agreements (SLAs) [4]
are used to define the expected QoS between service con-
sumer and service provider. In general, QoS attributes can
be classified as deterministic or non-deterministic. The for-
mer indicates that the QoS attribute is known before a ser-
vice is invoked (e.g., price, security, etc.), while the latter
includes all attributes that are unknown at service invoca-
tion time (e.g., response time, availability, etc.). For non-
deterministic QoS attributes, monitoring approaches can be
used to continuously measure current QoS values.

Conceptually, there are two main approaches for QoS mon-
itoring: Server-side monitoring is usually accurate but re-
quires access to the actual service implementation which
is not always possible. In contrast, client-side monitoring
is independent of the service implementation but the mea-
sured values might not always be up-to-date since client-side
monitoring is usually done by sending probe requests (i.e.,
test requests that are similar to real requests). In this pa-
per, we aim at combining the advantages of both approaches
which has been realized in the Vienna Runtime Environment
for Service-oriented Computing (VRESCo) [8]. Therefore,
we have linked an existing client-side QoS monitoring ap-
proach [14] together with server-side monitoring based on
Windows Performance Counters [18]. Furthermore, event
processing is used to integrate both approaches and provide
means to monitor SLAs. If SLA obligations are violated,
notifications are sent to interested subscribers using E-Mail
or Web service notifications.

The contribution of this paper is threefold: Firstly, we
present two approaches for monitoring QoS attributes of
Web services. Secondly, we show how these approaches have
been integrated into VRESCo, and how simple SLA obliga-
tions can be defined and monitored using event processing.
Thirdly, we evaluate the accuracy of the two monitoring ap-
proaches and discuss how combining them leads to a com-
prehensive QoS monitoring framework.

The remainder of this paper is as follows. Section 2 shows
our QoS model, and describes the client- and server-side
monitoring approach. Section 3 introduces the VRESCo
runtime, shows how QoS monitoring has been integrated
and how SLA obligations are monitored. Section 4 presents
the accuracy of the QoS monitoring approaches and briefly
discusses the usefulness of combining them. Finally, Sec-
tion 5 gives related work and Section 6 concludes the paper.

2. QOS MONITORING
In this section, we first briefly introduce the QoS model

we have used in our work. Then we present two conceptually
different monitoring approaches for Web services which we
have integrated into VRESCo.

2.1 QoS Model
There are several definitions of QoS in literature [6,12,19].

Figure 1 depicts our QoS model which consists of the four
categories Performance, Dependability, Security/Trust and
Cost/Payment. In the remainder of this paper we focus on
the first two categories since they can be measured automat-
ically, with a special emphasis on those attributes that are
currently measured by our approach.

QoSClass

Performance Dependability
Security and

Trust
Cost and
Payment

- Execution time
- Latency
- Response time
- Round trip time
- Scalability
- Throughput

- Availability

- Accuracy

- Robustness

- Security

- Reputation

- Price

- Penalty

- Reliable Messaging

Figure 1: QoS Model

Performance-related attributes of services can be mea-
sured over several service invocations (see Figure 2). We
consider the following attributes: Execution time qex rep-
resents the service invocation time at the provider. This
consists of the actual Processing time qpt and the Wrapping
time qw (i.e., time needed to wrap XML messages). Latency
ql defines the time needed for the client request to reach
the service. Response time qrt indicates the service invoca-
tion time at the service consumer (i.e., execution time plus
latency), while Round trip time qrtt measures the overall
time needed for the request at the service consumer (i.e., re-
sponse time plus wrapping time at the client). Throughput
qtp represents the number of service requests that can be pro-
cessed within a given time period, while Scalability qsc de-
fines performance behavior of a service when the throughput
increases. In general, these performance-related attributes
are measured on the level of service operations.

Dependability-related attributes address the ability of ser-
vices to avoid frequent and severe failures. In contrast to
performance-related attributes, they are measured on the
service-level. Availability qav represents the probability that
a service is up and running, while Accuracy qac defines the
ratio of successful service executions in relation to the to-
tal number of requests. More details about our QoS model
(including the formulas to calculate the attributes) can be
found in [13].

2.2 Client-side Monitoring
The first approach to address QoS monitoring is done

client-side using the QUATSCH tool [14]. The overall idea
is to send probe requests to the services that should be mon-
itored. The service invocation is thereby divided into the
time periods shown in Figure 2 that correspond to the QoS
attributes introduced above.

3.2 Service Layer

Consumer

qw ql ql qwqptqw qw

qrt

qrtt

qex
NetworkNetwork Provider Consumer

tp0 tp1 tp2 tp3tc0 tc1 tc2 tc3

Figure 3.2: Service Invocation Timeline

In the following, we describe each attribute in detail. For each timing-related attribute, we
present the formula to illustrate how one single QoS attribute value is calculated. However,
when monitoring QoS attributes in real-world environments, we usually take the average of n

measurements to get a better approximation of the attribute. Each formula is either consumer-
or provider-specific, therefore, we denote a formula representing a consumer-specific QoS
attribute with a parameter c in the definition.

Processing Time: Given a service s and an operation o, the processing time on the server is
defined as follows:

qpt(s, o) = tp2 − tp1 (3.1)

It denotes the time needed to execute an operation for a specific service request. The value
is calculated by using the timestamps tp1 and tp2 taken before and after the processing phase
on the server (see Figure 3.2 for details). The processing time does not include any network
communication and is, therefore, an atomic attribute with the smallest granularity.

Wrapping Time: The wrapping time of a given service s and an operation o is the time
needed to wrap and unwrap an XML message on both, the client- and server-side. We do
not consider the wrapping time as a QoS attribute on its own, however, it is needed to calcu-
late other QoS attributes. On the server-side, the wrapping time qwp is defined as follows:

qwp(s, o) = tp1 − tp0 + tp3 − tp2 (3.2)

On the client-side, the wrapping time qwc is defined as follows:

qwc(c, s, o) = tc1 − tc0 + tc3 − tc2 (3.3)

The actual wrapping time value is heavily influenced by the Web service framework (more
specifically the XML parser) and even the operating system itself. In [167], the authors even
split this time into three sub-values where receiving, (re-)construction and sending of a mes-
sage are distinguished. For our purpose it does not matter if the delay is caused by the XML

28

Figure 2: Service Invocation Times

The actual monitoring is done in three phases. In the pre-
processing phase, the WSDL files of the services are parsed
and stubs are generated. The performance measurement
code is thereby weaved into the stubs using aspect-oriented
programming (AOP). In the evaluation phase, the services
are executed by probing arbitrary values as input parame-
ters. If this is not successful, templates can be used to pro-
vide user-defined input. Finally, the result analysis phase
stores the results of the evaluation phase in a database.

The interesting part of the client-side monitoring approach
is that it is indeed able to accurately measure server-side at-
tributes such as execution time. In QUATSCH, this is done
using low-level TCP packet sniffing and analysis by leverag-
ing the TCP handshake (i.e., SYN and ACK packets) to
distinguish the different service invocation times [14].

2.3 Server-side Monitoring
The main drawback of the client-side approach is the fact

that monitoring is done by regularly sending probe requests
(e.g., every 5 minute). Single results should be handled with
caution since they represent only snapshots (e.g., the service
might be under heavy load when the probe request is sent).
Decreasing the monitoring interval might mitigate this prob-
lem to some extent but this must be done carefully since
short monitoring intervals (e.g., once every second) may fi-
nally affect the actual performance of the service.

Server-side monitoring addresses this problem by contin-
uously measuring QoS attributes. Since no probe requests
are needed anymore, the measured values represent “real”
service invocations. However, as said above, this technique
requires access to the actual Web service implementation
which is not always possible in practice.

Windows Performance Counters (WPC), especially the
counters regarding the Windows Communication Founda-
tion (WCF) [10], are part of the .NET framework and pro-
vide such server-side QoS monitoring for Web services [18].
WPC supports a rich set of counters that can be measured
at runtime. For our work, we focus on the following coun-
ters: Call Duration indicates the service invocation time
which resembles Execution Time in the client-side approach.
Calls Per Second defines how often a service has been in-
voked, while Calls Failed Per Second represents a similar
counter for unsuccessful service invocations. Other perfor-
mance counters (e.g., Transactions Flowed Per Second, Se-
curity Validation and Authentication Failures, etc.) could
also be integrated seamlessly.

As before, monitoring is done in user-defined intervals.
The different performance counter values are thereby aggre-
gated and averaged within an interval, and finally re-set at
the beginning of the next interval. For instance, if a service
has been invoked 3 times, the average response time of these
invocations is returned by the counter.

3. QOS/SLA INTEGRATION IN VRESCO
In this section, we show how the presented client- and

server-side monitoring approaches have been integrated into
VRESCo and how SLA monitoring can be achieved using
the event processing engine.

3.1 VRESCo Overview
Before describing the QoS integration in detail, we briefly

introduce the VRESCo service runtime environment [8].
The aim of this runtime is to address current SOC chal-
lenges and ease engineering of service-centric systems. More
precisely, VRESCo addresses service metadata, QoS-aware
service selection and service composition, dynamic binding
and mediation of services, and complex event processing.

Service
Client

SOAP

Services

measure

QoS
Monitor

VRESCo Client Library

Daios Mapping
Library

invoke

SOAP

VRESCo Runtime Environment

Registry
Database

Notification
Engine

Query
Engine

Composition
Engine

Query
Interface

Publishing
Interface

Metadata
Interface

Notification
Interface

Management
Interface

Composition
Interface

Publishing/
Metadata
Service

Management
Service

O
R

M

La
ye

r

Ac
ce

ss

C
on

tro
l

Certificate
Store

Event
Database

Figure 3: VRESCo Overview

The architecture is depicted in Figure 3. The runtime
follows the “Software as a Service” concept and provides its
core functionality as Web services that can be accessed using
the client library or directly using SOAP. Services and asso-
ciated metadata are published in the registry database using
the publishing/metadata service, while the actual database
access is done using an ORM layer. The VQL query engine
provides type-safe querying of registry content, while the
access control layer is responsible for allowing only autho-
rized and authenticated users access to the VRESCo core
services. The event notification engine [7] can be used to in-
form interested subscribers if events of interest occur (e.g.,
new service is published, etc.), while all events are addi-
tionally persisted in the event database. As discussed later,
this event engine is leveraged for our QoS and SLA moni-
toring approach. Finally, the QoS monitor on the left-hand
side represents the QUATSCH monitor [14] that follows the
client-side monitoring approach. More information about
the VRESCo core services and the service mediation ap-
proach are not within the scope of this paper and omitted
for brevity. The interested reader is referred to [8].

3.2 QoS Integration
The overall architecture of our monitoring approach is

shown in Figure 4. The client-side monitor QUATSCH was
first integrated into VRESCo. Users can specify QoS moni-
toring schedules following the CRON time notation to define
which service (or service operation) should be monitored in
which time intervals. Since this is a client-side approach,
the monitor runs on a dedicated QUATSCH host as shown
in the middle of the figure. The actual monitoring is then

done using AOP and TCP packet analysis as described in
Section 2.2. Once the current QoS values have been mea-
sured, they are published into the VRESCo runtime. This
is done via the QoS Manager that receives the values and, in
turn, publishes them as corresponding QoS events into the
event notification engine.

The monitoring is done regularly based on the user-defined
monitoring schedules. The set of resulting QoS events rep-
resents the history of QoS information as collection of single
QoS snapshots. To make these values easily accessible, they
are aggregated by a QoS aggregation scheduler task on a reg-
ular basis, and finally attached to the corresponding service
(or service operation).

WPC
Monitor

Service Host

S1

QUATSCH Host

QUATSCH
Monitor Event

Engine

VRESCo Host

QoS
Manager

Mapping

QoS
Events

SLA Violation
Notifications

SLA Obligations Subscriptions

S
LA

 L
ay

er
Q

oS
 L

ay
er

Figure 4: Monitoring Approach

As already discussed, the client-side approach has both
strengths and weaknesses. Therefore, we decided to addi-
tionally integrate a server-side approach using WPC which
is an integral part of the .NET framework. Consequently,
the WPC-based approach is restricted to services imple-
mented in .NET. The WPC monitor runs on the same host
as the service (see Figure 4) and continuously monitors its
QoS attributes. The measured values are published into the
VRESCo runtime the same way as described before. For the
WPC-based approach the monitoring schedules are defined
in configuration files as shown in Listing 1. It defines which
service/operation should be monitored, together with the
monitoring and availability checking interval (in ms). The
first describes how often the counters are retrieved while the
latter is required since availability should be checked more
often than other QoS attributes to get meaningful results.

Listing 1: WPC Monitoring Configuration
<vresco . qosmonitor ing mon i t o r i ng in t e rva l=”60000 ”

a v a i l a b i l i t y c h e c k i n t e r v a l=”5000 ”>
<webserv i ce s>

<webserv ice wsdl=”ht tp : // l o c a l h o s t : 8 0 1 3 / s ?wsdl ”>
<ope ra t i on s>

<add name=”TestOperation ”/>
</ ope ra t i on s>

</ webserv ice>
</ webse rv i ce s>

</ vresco . qosmonitor ing>

In general, the two approaches are independent. How-
ever, some attributes can only be measured by one of the
approaches (e.g., latency and response time have to be mea-
sured from the client-side). Table 1 shows the QoS attributes
currently measured in VRESCo and depicts which approach
has been taken for which attribute. Throughput and Calls
Per Second seem to refer to the same QoS attribute. How-
ever, the first represents the maximum number of requests
that can be processed, while the latter indicates the number
of invocations that really occurred.

QoS Attributes Monitored by
Execution Time QUATSCH & WPC
Response Time QUATSCH

Latency QUATSCH
Availability QUATSCH & WPC
Throughput QUATSCH

Calls Per Second WPC
Calls Failed Per Second WPC

Table 1: QoS Attributes

It can be seen that two attributes are measured by both
approaches. For both Availability and Execution Time, the
WPC-based approach is usually more accurate since it does
not need to send probe requests, but represents the values of
real invocations. However, we decided to monitor using both
approaches since the measured values might be different. In
Section 4, we briefly discuss why this combination is useful
and give some concrete examples.

3.3 SLA Monitoring
QoS monitoring approaches, as introduced in the last sec-

tion, represent an essential foundation for SLAs, which de-
fine the expected QoS between service providers and con-
sumers. In this section, we describe the SLA monitoring
approach in VRESCo, and how clients can react to SLA vi-
olations. This approach is based on the VRESCo event
engine and is depicted in the top part of Figure 4. To
give a brief overview, simple SLA obligations can be at-
tached to services. This is done using the publishing service
that also allows to temporary start and stop SLA monitor-
ing. These obligations are then transformed to subscriptions
specified in the Esper Processing Language (EPL) [2] since
the VRESCo event engine is based on the open source en-
gine Esper. Those listeners can be directly attached to the
engine, which does the actual matching between subscrip-
tions and events. Finally, when such matches occur the sub-
scribers are notified about the corresponding SLA violation.

Frameworks such as WSLA [4] have been proposed for
defining complex SLAs, but they are rarely used in practice.
Therefore, we decided to provide a mechanism for defining
simple SLA obligations representing guarantees on the QoS
attributes of services, which are shown in Table 2.

First of all, obligations can be either attached to ser-
vice operations or revisions (in VRESCo, services can have
multiple revisions). Every obligation is valid only within
a given period of time after which it expires. The prop-
erty name represents the QoS attribute to monitor (e.g.,
response time), while logical operator and property value
are used to define threshold values (e.g., < 500 ms). Ag-
gregation functions (e.g., sum, max, avg, median, etc.) can
further be defined on multiple QoS events. Obligations also
define the notification mechanism and the address used for
violation notifications (e.g., E-Mail or WS-Eventing notifi-
cations). Finally, sliding window operators can be used to
define the time period to consider for the QoS events (e.g.,
the last 10 events or events within the last 5 minutes).

To give concrete examples, a simple SLA obligation could
define that the availability of revision 23 should be greater
than 0.99. This obligation is transformed to the following
EPL expression (please note that logical operators must be
inverted since subscriptions represent violation conditions):

Property Description
Id Identifier of the obligation

RevisionId Identifier of the service revision
OperationId Identifier of the service operation
Start Date Start date of the obligation
End date End date of the obligation

PropertyName QoS attribute to monitor
Aggregation Aggregation function on property

LogicalOperator Logical operator used for comparison
PropertyValue Threshold value used for comparison
ReactionType Notification mechanism to use

ReactionAddress Address of the subscriber
WindowType Type of the sliding window operator
WindowValue Value of the sliding window operator

Table 2: SLA Obligations

select * from QoSRevisionEvent where Revision.Id=23
and Property=’Availability’ and DoubleValue<=0,99

A more complex SLA obligation could define that opera-
tion 47 of service revision 11 should have an average response
time of less than 500 ms within the last 24 hours. Besides
the sliding window operator (win:time) this SLA obligation
uses univariate statistics on event streams (stat:uni and
average) which are provided by Esper:

select * from QoSOperationEvent(Revision.Id=11 and
Operation.Id=47 and Property=’ResponseTime’)\\
.win:time(24 hours).stat:uni(’DoubleValue’)
where average>=500

Once an SLA violation is detected, notifications are sent
using E-Mail or Web service notifications to the specified
address. The subscribers can then react accordingly, for in-
stance by rebinding to functionally equal services [8]. In this
regard, the SLA violation mechanism can also be used by
service providers to monitor if services perform as intended.
SLA violation notifications could then automatically trigger
to start new instances of this service and publish them into
VRESCo. Such scenarios and ways to define SLA penalty
models are part of our future work.

4. EVALUATION
To evaluate our approach, we compare the accuracy of

both monitoring approaches in terms of execution time and
availability as two exemplary values that can be measured
by both QUATSCH and WPC. Based on these findings, we
discuss why a combination of both approaches is useful and
highlight some of its advantages and disadvantages.

Our evaluation environment consists of a server hosting
VRESCo and a set of C#/.NET dummy services that have
a configurable execution time and a variable availability (3
downtimes of 30 min, 2 min and 10 min length, and sim-
ulated network problems with short interruptions between
19:00 and 19:20). Additionally, QUATSCH is hosted on a
VMWare image running on a different server in the LAN.

Figure 5 depicts the results of our monitoring experiments
where QUATSCH probes every 5 minutes whereas WPC
measures every minute. We further use soapUI [16] to sim-
ulate clients. The different measurement intervals are based
on the fact that QUATSCH sends real invocations to probe
a service, while WPC has lower overhead because it queries
performance counters provided by the operating system.

 999000

1000000

1001000

1002000

1003000

17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30

M
ic

ro
se

co
nd

s

Time

Execution Time (WPC)
Execution Time (QUATSCH)

Simulated Execution Time

(a) Execution Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30

A
va

ila
bi

lit
y

Time

Availability (WPC)
Availability (QUATSCH)

Simulated Availability

(b) Availability

Figure 5: Accuracy of WPC and QUATSCH

Figure 5(a) depicts the measured execution time over 4
hours. The results show that both approaches are pretty
accurate. The deviation from the simulated execution time
(1 sec) is less than 2 ms for most measurements. The values
for QUATSCH indicate that execution time can be indeed
measured from the client-side. Additionally, it can be seen
that WPC is more accurate because it represents the average
execution time of real invocations. The gap between simu-
lated execution time and average value measured by WPC
is 0.88 ms which is partly caused by internal processing of
the test services (e.g., threading, console output, etc.).

Figure 5(b) shows the simulated and measured availabil-
ity of the test services. It can be observed that WPC de-
tects downtimes faster than QUATSCH, which is due to the
shorter monitoring interval. WPC further divides this inter-
val into availability checking intervals (5 sec). Therefore, the
availability of one monitoring interval can also be measured
(e.g., at 18:31 and 20:02). In contrast to that, QUATSCH
cannot do this fine-grained distinction (i.e., availability is
either 0 or 1). As a result, QUATSCH does not recognize
the short downtime at 20:02. The same is true for the times-
pan between 19:00 and 19:20 where WPC is quite accurate
whereas QUATSCH does not detect this at all. It should
be noted that the same behavior can be observed when the
execution time in Figure 5(a) is varying.

Nonetheless, combining both approaches is still useful.
Firstly, some QoS attributes can only be measured from
the client-side (e.g., latency). Secondly, it is possible to
distinguish between client- and server-side view on some
QoS attributes (e.g., availability). For instance, if there is
no network connection on the QUATSCH monitoring host,
client-side availability decreases even if the service is run-
ning. However, this can be verified by the WPC approach.
Thirdly, bogus server-side measurements can be detected by
the client-side approach, by comparing measured QoS values
over a longer period of time. Fourthly, another dimension
to client-side monitoring could be added by integrating ac-
tually perceived QoS values on the client-side (in addition
to the measured values of the QUATSCH probe requests).
However, the combination of both approaches also has some
drawbacks. For instance, clients must agree to install mon-
itoring software which may not always be the case.

Finally, we have shown that the accuracy of the monitor-
ing approaches makes them suitable for SLA monitoring as
introduced in Section 3.3. As shown in our previous work [7],
the throughput of the VRESCo event engine is high enough
for the expected number of services (e.g., 2000 services with
the same monitoring intervals as above). Furthermore, since
SLA monitoring is based on events, it is easily possible to
subscribe to SLA violations and react adaptively if needed.

5. RELATED WORK
Several different QoS models have been proposed in lit-

erature (e.g., [6, 12, 19]). However, most approaches do not
discuss how QoS can be monitored. An overview of QoS
monitoring approaches for Web services is presented by Thio
et al. [17]. The authors discuss various techniques such as
low-level sniffing or proxy-based solutions. The prototype
system presented in their paper adopts an approach where
the SOAP engine library is instrumented with logging state-
ments to emit the necessary information for QoS measure-
ment. A major drawback of this approach is the dependency
on the modified SOAP library and the resulting maintenance
and distribution of the modified library.

QoS monitoring has been an active research area for years
which is not only focused on Web service technology. For
instance, Garg et al. [3] present the WebMon system that
aims at monitoring the performance of web transactions us-
ing a sensor-collector architecture. Similar to our work, their
approach correlates client- and server-side response times
which are measured by different components. In their work,
the question is whether to instrument the web server or the
web browser for doing the performance measurements.

There are many existing approaches for SLA monitoring
and violation detection (e.g., [1,5,11,15] just to name a few).
Skene et al. [15] introduce SLAng which is a general SLA
language not only focused on Web services, but targeted
to distributed systems and applications with reliable QoS
characteristics. The language is modeled in UML while the
syntax is defined using XML schema. The authors further
define a model for all parties and services involved in such
agreement. The actual constraints in the SLAs are then
defined using the Object Constraint Language (OCL).

Raimondi et al. [11] describe an SLA monitoring system
that translates timeliness constraints such as latency or avail-
ability of SLAs into timed automata, which are then used
to verify execution traces of services. Their approach uses
SLAng for defining SLAs and is realized as Axis handler.

Lodi et al. [5] describe a middleware that enables SLA-
driven clustering of QoS-aware application servers. Instead
of existing standards, they use XML for defining SLAs which
was inspired by SLAng. The architecture consists of three
components: The Configuration Service is responsible for
managing the QoS-aware cluster, the Monitoring Service
observes the application at runtime to detect violations of
SLAs, and the Load Balancing Service intercepts client re-
quests to balance them among different cluster nodes. If the
cluster is mainly idle or close to breach the SLA (e.g., the
response time converges to the upper bound), it is reconfig-
ured (i.e., add/release nodes).

Chau et al. [1] present a similar approach for modeling and
event-based monitoring of SLAs which is part of the eQoSys-
tem project. The SLA model refines the WSLA specifica-
tion: SLAs consist of multiple SLOs and use various metrics
that indicate different measurement aspects of a process.
Furthermore, action handlers can be defined to react when
SLOs are violated. Similar to our work, the SLA monitoring
approach is based on events. These events are assumed to
be emitted by the business process and contain a snapshot
of the current process state. In contrast to that, our QoS
events focus on the service- and operation-level. Further-
more, we additionally address how QoS attributes of Web
services can be monitored from client- and server-side.

6. CONCLUSION
Monitoring QoS attributes of Web services is an essential

aspect to enforce SLAs established among business partners.
In this paper, we have shown that a combination of client-
and server-side QoS monitoring can be beneficial regard-
ing the overall monitoring capabilities since both approaches
have strengths and weaknesses. These monitoring capabili-
ties combined with a powerful Web service runtime enable
an event-based detection of SLA violations for Web services,
while subscribers can react appropriately to such violations.
For future work, we plan to automatically react to SLA vi-
olations, such as deploying new service instances on-the-fly
or dynamically increase certain virtual machine capabilities
(that are often used to host Web services). Furthermore, we
envision to measure and publish the actual response times at
the client-side, in addition to the QUATSCH measurements
that rely on probe requests.

Acknowledgements
The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreement 215483 (S-
Cube). Additionally, we would like to thank Alexander
Schindler for realizing the WPC-based monitoring approach.

7. REFERENCES
[1] T. Chau, V. Muthusamy, H.-A. Jacobsen, E. Litani,

A. Chan, and P. Coulthard. Automating SLA
Modeling. In Proc. of the 2008 Conference of the
Center for Advanced Studies on Collaborative
Research (CASCON’08), 2008.

[2] Esper, 2009. http://esper.codehaus.org/.

[3] P. K. Garg, K. Eshghi, T. Gschwind, B. R. Haverkort,
and K. Wolter. Enabling Network Caching of Dynamic
Web Objects. In Proc. of the 12th Int. Conference on
Computer Performance Evaluation, Modelling
Techniques and Tools (TOOLS’02), 2002.

[4] A. Keller and H. Ludwig. The WSLA Framework:
Specifying and Monitoring Service Level Agreements
for Web Services. Journal of Network and Systems
Management, 11(1):57–81, 2003.

[5] G. Lodi, F. Panzieri, D. Rossi, and E. Turrini.
SLA-Driven Clustering of QoS-Aware Application
Servers. IEEE Transactions on Software Engineering,
33(3):186–197, 2007.

[6] D. A. Menascé. QoS Issues in Web Services. IEEE
Internet Computing, 6(6):72–75, 2002.

[7] A. Michlmayr, F. Rosenberg, P. Leitner, and
S. Dustdar. Advanced Event Processing and
Notifications in Service Runtime Environments. In
Proc. of the 2nd Int. Conference on Distributed
Event-Based Systems (DEBS’08). ACM, 2008.

[8] A. Michlmayr, F. Rosenberg, P. Leitner, and
S. Dustdar. End-to-End Support for QoS-Aware
Service Selection, Invocation and Mediation in
VRESCo. Technical report, Vienna University of
Technology, 2009. http://www.infosys.tuwien.ac.
at/Staff/michlmayr/papers/TUV-1841-2009-03.pdf.

[9] M. P. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-Oriented Computing: State of
the Art and Research Challenges. IEEE Computer,
40(11):38–45, 2007.

[10] C. Peiris, D. Mulder, A. Bahree, A. Chopra,
S. Cicoria, and N. Pathak. Pro WCF: Practical
Microsoft SOA Implementation. Apress, 2007.

[11] F. Raimondi, J. Skene, and W. Emmerich. Efficient
online monitoring of web-service SLAs. In Proc. of the
16th ACM SIGSOFT Int. Symposium on Foundations
of Software Engineering (SIGSOFT’08/FSE-16), 2008.

[12] S. Ran. A Model for Web Services Discovery with
QoS. SIGecom Exchanges, 4(1):1–10, 2003.

[13] F. Rosenberg. QoS-Aware Composition of Adaptive
Service-Oriented Systems. PhD thesis, Vienna
University of Technology, June 2009.

[14] F. Rosenberg, C. Platzer, and S. Dustdar.
Bootstrapping Performance and Dependability
Attributes of Web Services. In Proc. of the IEEE Int.
Conference on Web Services (ICWS’06), Sept. 2006.

[15] J. Skene, D. D. Lamanna, and W. Emmerich. Precise
Service Level Agreements. In Proc. of the 26th Int.
Conference on Software Engineering (ICSE’04), 2004.

[16] soapUI, 2009. http://www.soapui.org/.

[17] N. Thio and S. Karunasekera. Automatic
measurement of a QoS metric for Web service
recommendation. In Proc. of the Australian Software
Engineering Conference (ASWEC’05), 2005.

[18] WCF Performance Counters, 2009. http://msdn.
microsoft.com/en-us/library/ms735098.aspx.

[19] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-aware Middleware
for Web Services Composition. IEEE Transactions on
Software Engineering, 30(5):311–327, May 2004.

