
Advanced Event Processing and Notifications in Service
Runtime Environments

Anton Michlmayr, Florian Rosenberg, Philipp Leitner, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstrasse 8/184-1, 1040 Wien, Austria
lastname@infosys.tuwien.ac.at

ABSTRACT
Service-oriented Architecture (SOA) and Web services have
become widely adopted for building cross-organizational and
flexible applications. Yet, there is one issue inherent to this
paradigm: services are changing regularly. Using the pub-
lish/subscribe style, subscribers can be notified when such
changes occur. In current service registry standards, how-
ever, notifications are mainly used to inform about changes
in the registry data, which does not include service run-
time information. In this paper, we present an approach
that leverages event processing mechanisms for Web services
based on a rich event model that supports the full service
lifecycle, including runtime information concerning service
discovery and service invocation, as well as Quality of Ser-
vice attributes. Furthermore, besides subscribing to events
of interest, users can also search in historical event data.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems — Distributed Applications

Keywords
Service-oriented Architecture, Publish/Subscribe, Event Pro-
cessing

1. INTRODUCTION
Following the Service-oriented architecture (SOA) para-

digm, service providers register services and corresponding
descriptions in registries. Service consumers can then find
services in a registry, bind to the services which best fit
their needs, and finally execute them. Web services [24] are
one widely adopted realization of SOA and build upon the
main standards SOAP, WSDL and UDDI. Over the years, a
complete Web service stack has emerged that provides rich
support for multiple higher level functionality (e.g., business
process execution, transactions, metadata exchange, etc.).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’08, July 1-4, 2008, Rome, Italy
Copyright 2008 ACM ISBN ...$5.00.

Practice, however, has revealed some problems of the SOA
paradigm in general and Web services in particular. The
idea of public registries where everybody can publish ser-
vices did not succeed. This is highlighted by the fact that
Microsoft, SAP and IBM have shut down their public reg-
istries in the end of 2006. Moreover, there are still a number
of open issues in SOA research [16] and practice, such as dy-
namic binding and invocation, dynamic service composition,
and service metadata.

One reason for these issues is represented by the fact that
services and associated metadata and Quality of Service
(QoS) attributes change regularly. However, service con-
sumers are not aware of these changes. In this regard, the
lack of appropriate event notification mechanisms limits flex-
ibility because service consumers cannot automatically react
to service and environment changes.

Notifying subscribers when events of interest occur repre-
sents the focus of the publish/subscribe style [4] in general,
and event-based systems [12] in particular. Cugola and Di
Nitto [2] give a detailed overview of approaches that combine
publish/subscribe and SOA. The most popular examples are
WS-Notification [15] and WS-Eventing [23]. In both specifi-
cations, publishers, subscribers, and the event infrastructure
are implemented as Web services. However, event process-
ing mechanisms besides topic- and content-based filtering of
events are not addressed by these specifications.

Additionally, the service registry standards UDDI [14] and
ebXML [13] introduce limited support for event notifica-
tions. Both standards have in common that users are en-
abled to track created, updated and deleted entries in the
registry. However, additional runtime information concern-
ing service binding and invocation, as well as QoS attributes
are not taken into consideration.

We argue that receiving notifications about such runtime
information is equally important and should, therefore, be
provided by SOA runtime environments. Furthermore, com-
plex event processing mechanisms supporting event patterns,
and search in historical event data are needed for keeping
track of vast numbers of events. In this paper, we focus on
such runtime event notification support. Our contribution is
threefold: firstly, we introduce event notification support in
SOA runtime environments, including event types, partici-
pants, representations, as well as ranking, correlation, sub-
scription, and notification mechanisms. Secondly, we show
how this was integrated into the VRESCo runtime [6, 11].
Finally, we present a case study which is used for evaluation,
and point to further application scenarios which are enabled
by such runtime notification support.

TELCO 1

PARTNER 2

Shipping
Service

PARTNER 1
CreditCard
Payment
Service

TELCO 2

VRESCo
Registry VR

ES
C

o
S

O
A

 R
un

tim
e

Public Services

Customer Services

VRESCo
Registry

V
R

E
SC

o
SO

A
R

un
tim

e

Order
Processing
Application

Billing
Information

Contract
Switching

Rate/Roaming
Information

Service

PARTNER 3

Inhouse Services

CRM
Services

Order
Management

Services

Billing
Services

Mobile
Operating
Services

Partner Services

Number
Porting
Service

Roaming
Service

TELCO 3

VRESCo
Registry V

R
E

SC
o

SO
A

R
un

tim
e

Partner Services

Number
Porting
Service

Roaming
Service

Supplier
Service

(a) TELCO Environment

TELCO Number
Porting Service

v1, INITIAL, STABLE, jaxrpc

v2, alt, jaxrpc

v4, alt, wcf

v6, HEAD, LATEST, wcf

v3, wcf

v5, HEAD, alt, wcf

(b) Number Porting Service Revisions

Figure 1: TELCO Case Study

The remainder of this paper is organized as follows. Sec-
tion 2 presents a motivating example for this work. Section 3
introduces the VRESCo SOA runtime and gives an archi-
tectural overview of the event notification engine. Section 4
introduces the necessary background of this work while Sec-
tion 5 presents in detail how event notifications are sup-
ported in VRESCo. Section 6 gives an evaluation of our
work, while Section 7 presents related work in this area. Fi-
nally, Section 8 concludes the paper.

2. MOTIVATING EXAMPLE
The case study shown in Figure 1(a) is borrowed from [11]

and will be used for illustration purposes. In this case study,
a telecommunication company (TELCO) consists of multi-
ple departments that provide different services to different
service consumers. Inhouse services are shared among the
different departments (e.g., CRM services). Customer ser-
vices are only used by the TELCO customers (e.g., view
billing information) whereas public services can be accessed
by everyone (e.g., get phone/roaming charges). Addition-
ally, the TELCO consumes partner services (e.g., credit
card service) as well as competitor services from other TEL-
COs (e.g., roaming service). Furthermore, service providers
maintain multiple revisions of their services. Figure 1(b)
illustrates the revision graph of TELCO2’s number port-
ing service. In this figure, TELCO2 provides two branches
of this service which are built on different Web service plat-
forms (e.g., JAX-RPC) and may provide different interfaces.

This case study shows several scenarios where notifications
are useful. Consider for example that TELCO1 wants to get
notified if new shipping services get available or if new re-
visions of TELCO2’s number porting service are published.
Furthermore, it is also important to know if services get un-
available or are removed from the registry (e.g., in order to
automatically switch to another service). Besides these ba-
sic event notifications another concern for TELCO1 is to ob-

serve QoS attributes. For instance, TELCO1 wants to react
if the response time of a service falls beyond a given thresh-
old. This implies that the environment considers runtime
information of its services. To go one step further, TELCO1
also wants to get notified, if the average response time of
TELCO2’s number porting service – measured within a time
frame of 6 hours – falls beyond a given threshold since this
might violate their Service Level Agreement (SLA).

In addition to subscribing to certain events of interest,
TELCOs also want to search in the vast amount of historical
events. In that way, stakeholders are enabled to observe
the history of a given service or service provider within a
given period of time, when deciding about the integration of
external services into the own business processes.

In these scenarios notifications have clear advantages over
traditional approaches using runtime exceptions, since ser-
vice consumers can instantly react to failures or QoS changes.
The power of events additionally opens up new perspectives
and applications scenarios that can be build in a flexible
manner. For instance, this includes SLAs and service pric-
ing models as well as provenance-aware applications, which
are discussed in Section 6.

3. VRESCO APPROACH
The event notification approach presented in this paper

was implemented as part of the VRESCo (Vienna Runtime
Environment for Service-Oriented Computing) project. Be-
fore going into the details of our eventing approach, we give
a short overview of this project.

3.1 Introduction
The VRESCo runtime environment introduced in [11]

aims at addressing some of the current challenges in Service-
oriented Computing research [16] and practice. Among oth-
ers, this includes topics related to service discovery and
metadata, dynamic binding and invocation, service version-
ing and QoS-aware service composition. Besides this, an-

VRESCo Runtime Environment

Registry
Database

Publishing
Interface

Metadata
Interface

Composition
Interface

Notification
Interface

ORM
Layer

Client
Program

SOAP

Composition
Engine

Notification
Engine

SOAP

SOAP

SOAPQoS
Monitor

Query
Interface

Query
Engine

Daios Client
Library

Publishing
Engine

Figure 2: VRESCo Overview

other goal is to facilitate engineering of service-oriented ap-
plications by reconciling some of these topics and abstract-
ing from protocol-related issues. The basic architecture of
VRESCo is shown in Figure 2. To be interoperable and
platform-independent, the VRESCo services are provided
as Web services which can be accessed either directly using
the SOAP protocol, or via the client library that provides a
simple API for accessing these services.

Services and associated metadata are stored in the registry
database that is accessed using the object-relational map-
ping (ORM) layer. The services are published and found in
the registry using the publishing and querying engine, re-
spectively. The VRESCo runtime uses a QoS monitor as
described in [18], which continuously monitors the QoS val-
ues of services, and keeps the QoS information in the registry
up to date. Furthermore, the composition engine aims at
providing support for QoS-aware service composition which
is part of our ongoing work. The event notification engine
which is the focus of this paper is responsible for notifying
subscribers when certain events of interest occur.

To carry out the actual Web service invocations the Daios
dynamic Web service invocation framework [7] has been in-
tegrated into the VRESCo client-side library. Daios de-
couples clients from the services to be invoked by abstract-
ing from service implementation issues such as encoding
styles, operations or endpoints. Therefore, clients only need
to know the address of the WSDL interface describing the
target service, and the corresponding input message; all
other details of the target service implementation are han-
dled transparently. Besides dynamic invocation, VRESCo
also supports dynamic binding of Web services [11]. The aim
is to dynamically bind to services offering the same function-
ality. This is done using so called rebinding strategies which
are integrated into the service proxies. The rebinding can
either be QoS-based (using queries on the measures QoS at-
tributes) or content-based (using unique identifiers within
different service categories).

Web services evolve over time, which raises the need to
maintain multiple service revisions concurrently. VRESCo
supports service versioning by introducing the notion of ser-
vice revision graphs (see Figure 1(b) for an example) that
define successor-predecessor relationships between different
revisions of a service and support multiple branches [6]. Re-
vision tags are used to distinguish the different service revi-
sions. Service consumers are then enabled to decide which
service to use. For instance, they can always invoke specific
revisions of a service, or even switch between service revi-
sions at runtime (e.g., always invoke the newest revision).

3.2 Eventing Architecture
This section gives a high-level overview of the VRESCo

notification support, while the details are described in Sec-
tion 5. The basic idea can be summarized as follows: Noti-
fications are published within the runtime if certain events
occur (e.g., service is added, user is deleted, etc.). In con-
trast to current Web service registries, this also includes
events concerning service binding and invocation, changing
QoS attributes, and runtime information. Service consumers
are then enabled to subscribe to get notified about the oc-
currence of these events.

Figure 3 depicts the architecture of the notification engine
which represents one component of the VRESCo runtime
shown in Figure 2 and is, therefore, also implemented in C#
on the .NET platform. The event processing functionality
is based on NEsper, which is a port of the event process-
ing engine Esper1. Within the notification engine, events
are published using the eventing service. Most events are
directly produced by the corresponding VRESCo services
(e.g., service management events are fired by the publish-
ing service while querying events are fired by the querying
service). In contrast to this, events related to binding and
invocation are produced by the service proxies located in
the client library. Event adapters are thereby used to trans-
form incoming events into the internal event format which
can be processed efficiently. The eventing service then for-
wards these events to the event persistence component that
is responsible for storing events in the event database. This
is done using the ORM layer. Finally, the eventing service
feeds incoming events into the Esper engine.

Query Engine

Notification Engine

Querying
Service

Subscription
Manager

Events

Subscriptions

Queries

Results

Event
Adapters

Eventing
Service

Notifications Notification
Manager

Storage

Event
Database

Es
pe

r E
ng

in
e

Subscription
Interface

Event Search
Interface

Figure 3: VRESCo Eventing Architecture

The subscription interface is used for subscribing to events
of interest according to the methods proposed in the WS-
Eventing specification. The subscription manager is respon-
sible for managing subscriptions which are put into the sub-
scription storage. In addition, subscriptions are translated
for further processing. This is done by converting the WS-
Eventing subscriptions into Esper listeners which are at-
tached to the Esper engine.

The Esper engine performs the actual event processing
and is, therefore, responsible for matching incoming events
1http://esper.codehaus.org

received from the eventing service to listeners attached by
the subscription manager. On a successful match, the reg-
istered listener informs the notification manager that is re-
sponsible for notifying interested subscribers. Depending on
the listener type, the notification manager knows which no-
tification type to use (e.g., email, listener Web service).

Finally, the search interface is used to search for historical
events. The event database is implemented using a relational
database and accessed via the ORM layer. The querying
service returns a list of events that match the given query.

4. ESPER
The VRESCo notification support is based on the open

source event processing engine Esper. To understand how
Esper is integrated into our runtime and how events, sub-
scriptions and notifications are handled in VRESCo, we
briefly introduce Esper before going into more detail.

The Esper engine supports several ways for represent-
ing events. Firstly, any Java/C# object may be used as
an event as long as it provides getter methods to access
the event properties. Event objects should be immutable
since events represent state changes that occurred in the
past and should therefore not be changed. Secondly, events
can be represented by objects that implement the interface
java.util.Map. The event properties are those values that
can be obtained using the map getter. Finally, events may
be instances of org.w3c.dom.Node that are XML events.
In that case, XPath expressions are used as event proper-
ties. Additionally, Esper provides different types of prop-
erties that can be obtained from events. Simple properties
represent simple values (e.g., name, time). Indexed proper-
ties are ordered collections of values (e.g., user[4]) whereas
mapped properties represent keyed collections of values (e.g.,
user[’firstname’]). Finally, nested properties live within an-
other property of an event (e.g., service.QoS)

In Esper, subscriptions are done by attaching listeners
to the Esper engine, where each listener contains a query
defining the actual subscriptions. These listeners implement
a specific interface which is invoked when the subscription
matches incoming events. The queries use the Esper Query
Language (EQL) which is similar to the Structured Query
Language (SQL). The main difference is that EQL is for-
mulated on event streams whereas SQL uses database ta-
bles. The select clause specifies the event properties to re-
trieve, the from clause defines the event streams to use, and
the where clause specifies constraints. Furthermore, sim-
ilar to SQL there are aggregate functions (e.g., sum, avg,
etc.), grouping functions (group by), and ordering struc-
tures (order by). Multiple event streams can be merged
using the insert clause, or combined using joins. In ad-
dition to that, event streams can be joined with relational
data using SQL statements on database connections.

EQL provides a powerful mechanism to integrate tempo-
ral relations of events using sliding event windows. These
operators allow to define queries for a given period of time.
For instance, if QoS events regularly publish the QoS val-
ues of services, then subscriptions can be defined on the
average response time of a given service during the last 6
hours. Finally, EQL supports subqueries, output frequency,
and event patterns. The latter allows to define relations be-
tween subsequent events (e.g., -> representing a ’followed by’
relation). Section 6 gives some examples for EQL queries.
More information on Esper can be found in [3].

5. EVENTS IN VRESCO
After this brief introduction of the VRESCo project and

the Esper engine, this section presents in detail how events
are supported in our SOA runtime. This includes event
types, participants, representation, ranking, and correlation,
as well as subscription and notification mechanisms.

5.1 Event Types
The first step in developing such event notification mech-

anism is to define all event types which are supported by the
engine. In the context of our work there are several events
which can be captured at runtime. We have identified the
basic event types shown in Figure 4.

VersioningEvent

ServiceManagementEvent
Class

QoSEvent

ServiceManagementEvent
Class

MetadataEvent

ServiceManagementEvent
Class

QueryingEvent

VRESCoEvent
Class

ServiceManagementEvent

VRESCoEvent
Class

CompositionEvent

VRESCoEvent
Class

UserManagementEvent

VRESCoEvent
Class

BindingInvocationEvent

VRESCoEvent
Class

VRESCoEvent
Class

Figure 4: VRESCo Event Type Hierarchy

The event types form an event type hierarchy following the
concepts of class hierarchies (i.e., events inherit the proper-
ties of their parent event type). The biggest group in this
tree is represented by the service management events which
are triggered when services or service revisions and their as-
sociated metadata or QoS values change. Other event types
include runtime information concerning binding and invoca-
tion, querying information and user information. As shown
in Figure 4, all events inherit from the base type VRESCo-
Event which provides a unique event sequence number and
a timestamp measured during event publication.

Table 1 gives a detailed description of all events considered
by the VRESCo notification engine, where the events are
grouped according to their event type. The event condition
in the right column describes the situations when the event
occurs. Besides composition events, all events are fully im-
plemented in VRESCo. The composition engine which will
also make use of event notifications is part of our ongoing
work and, therefore, not addressed in this paper.

The current prototype provides a simple service metadata
model consisting of categories of services that perform the
same task, but we are currently working on an enhanced
metadata model that supports richer semantic descriptions
of services (e.g., including pre- and post-conditions). The
metadata events will then be adapted to reflect this model.

5.2 Event Participants
Event-based systems usually consist of two types of par-

ticipants which pose different requirements to the system,
namely event producers and event consumers.

Table 1: VRESCo Events
Event Type Event Name Event Condition

UserAddedEvent User is added to the runtime
UserModifiedEvent User is modified in the runtime

UserManagementEvent UserDeletedEvent User is deleted from the runtime
UserLoginEvent User logs in using the GUI
UserLogoutEvent User logs out using the GUI
ServicePublishedEvent New service is published into the runtime
ServiceModifiedEvent Service is updated in the runtime (no new revision)

ServiceManagementEvent ServiceDeletedEvent Service is deleted from the runtime
ServiceActivatedEvent Service is activated in the runtime
ServiceDeactivatedEvent Service is deactivated in the runtime
RevisionPublishedEvent New service revision is published into the runtime
RevisionActivatedEvent Service revision is activated in the runtime

VersioningEvent RevisionDeactivatedEvent Service revision is deactivated in the runtime
RevisionTagAddedEvent Service revision tag is added by the owner
RevisionTagRemovedEvent Service revision tag is removed by the owner
ServiceCategoryAddedEvent Service category is added to the runtime

MetadataEvent ServiceCategoryModifiedEvent Service category is modified in the runtime
ServiceCategoryDeletedEvent Service category is deleted from the runtime
QoSEvent Current QoS value of some service revision is published

QoSEvent RevisionGetsUnavailableEvent Service revision gets unavailable
RevisionGetsAvailableEvent Service revision gets available again
ServiceInvokedEvent Specific service is invoked

BindingInvocationEvent ServiceInvocationFailedEvent Service invocation failed
ProxyRebindingEvent Service proxy is (re-)bound to a specific service
RegistryQueriedEvent Registry is queried using a specific query string

QueryingEvent ServiceFoundEvent Specific service is found by a query
NoServiceFoundEvent No services are found by a query

Event Producers
In general, events are produced by VRESCo components.
However, different components are responsible for firing dif-
ferent kinds of events. These components which mainly dif-
fer in their location are described in this section. In this
regard, we distinguish between internal events which are
produced within the SOA runtime and external events which
are published from components outside the runtime.

Most events are directly produced by the corresponding
VRESCo services. For instance, service management events
(e.g., ServicePublishedEvent) are fired by the publishing ser-
vice. The same is true for versioning and metadata events.
According to this, user management events are published by
the user management service while querying events are pro-
duced by the querying service. All these event types have
in common that they are produced as part of the VRESCo
services and therefore represent internal events.

The application logic inherent to binding and invocation
of services is located in the servixe proxies provided by the
client library. As a result, the events concerning binding
and invocation (e.g., ServiceInvokedEvent) are fired by this
component. Therefore, VRESCo provides a notification in-
terface in order to allow clients to feed binding and invoca-
tion events into the runtime. These client events represent
external events which are then transformed into the internal
event format by the runtime.

Finally, the QoS monitor which regularly measures the
QoS values of services is responsible for firing QoS events.
Similar to the client library, the QoS monitor uses the noti-
fication interface to feed external events into the runtime.

Event Consumers
Similar to event producers, we distinguish between internal
and external consumers. Internal consumers reside within
the runtime and register listeners at the Esper engine which
are invoked when subscriptions match incoming events. Ex-
ternal consumers outside the runtime are notified depending
on the notification delivery mode defined in the subscription
request.

In general, there are two main groups of external con-
sumers: humans and services. Clearly, notification deliv-
ery mechanisms and the notification payload differ for these
two groups. Humans are mainly interested in notifications
sent per email, SMS or other technolgies such as news feeds
(e.g., RSS [20], Atom [21]). In some scenarios, it might
also be suitable to log the occurrence of events in log files
which are regularly checked by the system administrator.
In any case, notifications for humans might be less explicit
since humans can interpret incomplete information. In con-
trast to this, services notification can be sent using the
Web service notifications standards WS-Eventing and WS-
Notification. For our current prototype implementation, we
have enhanced the WS-Eventing specification since it repre-
sents a light-weight approach supporting content-based sub-
scriptions. The integration of WS-Eventing will be described
later.

Moreover, another distinction can be made between ser-
vice providers and service consumer which may be interested
in different types of events. For instance, service consumers
might not be interested in user management events or might
even not be allowed to receive them.

Table 2: VRESCo Event Correlation Sets
Event Correlation Set Events Correlation Identifier

User Management Create, update & delete users UserId
Service Lifecycle Create, update, delete, bind, invoke & query services ServiceId
Service Revision Lifecycle Create, update, delete, bind, invoke, query & tag revisions ServiceRevisionId
QoS Correlate all QoS measurements of one service revision ServiceRevisionId
Service Category Correlate all events of services within one service category ServiceCategoryId

5.3 Event Representation
The notification payload differs for humans and services.

While services need exact information about the event type
or the context in which an event occurred, the notification
payload for humans might be less verbose. In addition, no-
tifications for humans do not necessarily have to adhere to
standardized formats or rules.

To guarantee efficient processing of a huge number of
events, VRESCo uses its own event format implemented
as hierarchy of C# classes instead of using XML events.
Clearly, external events and notifications to Web service lis-
teners are sent using XML. The event classes consist of sim-
ple name-value pairs which are often used in event-based
systems since they support efficient content-based filtering
of events. According to the type-based approach the events
classes are part of an event hierarchy as introduced above.
Furthermore, in addition to simple name-value pairs the
event classes may also include non-primitive data types.

5.4 Event Ranking
The importance and relevance of different events can be

estimated by ranking them according to some fitness func-
tion. This is of particular interest when dealing with vast
numbers of events. The following list describes several ways
we have identified for ranking events.

• Priority-based : Event priority properties (e.g., 1 to 10
or ’high’ to ’low’) can be pre-defined according to the
event model, or defined by the event producer when
publishing the event. In the latter case, one problem
might be that event producers do not know the impor-
tance of particular events related to other events.

• Hierarchically : Events are ordered in a tree structure
where the root represents the most important event
while the leaves are less important.

• Type-based : All events are ranked based on the event
type. That means, each event has a specific type (pos-
sibly supporting type inheritance) which is used to de-
fine the ranking. However, the importance of some
event might not always depend only on its type - some-
times the event properties will make the difference.

• Content-based : Events can be ranked based on key-
words in the notification payload (e.g., if the payload
contains the keyword ’exception’ it be more important
than events with keyword ’warning’ or ’info’).

• Probability-based : In general, the frequency of differ-
ent events depends on environmental factors. In this
regard, one can assume that frequent events (e.g., Reg-
istryQueriedEvent) might be less important than infre-
quent ones (e.g., RevisionGetsUnavailableEvent).

• Event Patterns: Finally, some events often occur as
part of event patterns (e.g., proxy is bound to a spe-
cific service, followed by service is invoked using this
proxy). The ranking mechanism could consider such
event patterns.

VRESCo supports hierarchically, priority-, typed-, and
content-based ranking. Probability-based ranking could be
integrated by using the univariant statistic function provided
by Esper. This mechanism calculates statistics over the oc-
currence of different events (see Section 6 for an example).

In general, however, it should be noted that event rank-
ing has one inherent problem: while one specific event can
be critical for one subscriber, it is only minor for others
(e.g., QoS value changes, old service revision is deleted, etc.).
Yet, introducing event ranking mechanisms provides differ-
ent ways to express the importance of events.

5.5 Event Correlation
Event-based systems usually deal with vast numbers of

events which have to be managed accordingly. Event corre-
lation techniques are used to avoid losing track of all events
and their relationship. For instance, Rozsnyai et al. [19] de-
scribe the Event Cloud that provides different correlation
mechanisms. Basically, the idea is to use event properties
which have the same value as correlation identifier. For
instance, two events (e.g., ServicePublishedEvent and Ser-
viceDeletedEvent) having the same event attribute ServiceId
are correlated since they both refer to the same service.

In the context of our work, we have identified a number
of correlation sets summarized in Table 2, which shows the
name of the correlation set, the events which are subsumed
in this correlation, and the correlation identifier. The cor-
relation sets cover three different aspects: user management
using the UserId as correlation identifier, service (and ser-
vice revision) lifecycle and QoS using ServiceId (and Ser-
viceRevisionId), and service category information using the
ServiceCategoryId.

The difference between event correlation sets and event
types can be summarized as follows: While event types rep-
resent groups of events that occur in the same situations or
indicate the same state change (e.g., some service is pub-
lished), event correlation sets correlate all events that are
related due to some event attribute (e.g., service revision X
is published, deactivated, invoked, or the QoS value changes
etc.). The correlation sets enable users to track all impor-
tant events which are related.

5.6 Subscription Mechanisms
In general, event consumers can be enabled to subscribe

to their events of interest in several ways [4]. The most basic
way is following the topic-based style which uses topics to
classify events. Event consumers subscribe to receive noti-

EsperEngineSubscriptionManager Storage EventingService EventDatabase NotificationManager

...
<subscriptionQuery>
select * from QoSEvent
where Revision.Id = 4711
and ResponseTime > 100

</subscriptionQuery>
<notifyTo>
<Address>
http://localhost:4712/OnQoSEvent
</Address>

</notifyTo>
<Subscription>0815</Subscription>
...

subscribe

extract subscription

store subscription

extract EQL query

attach listener

publish

persist event

transform event

publish event

matching

notify event sink

notify listener

extract event sink

subscription

publication

Subscriber

Event
Source

Event
Sink

<event name=QoSEvent>
<RevisionId>4711</RevisionId>
<ResponseTime>344</ResponseTime>
<Subscription>0815</Subscription>

</event>

<event name="QoSEvent">
<Revision>4711</Revision>
<ResponseTime>344</ResponseTime>
...

</event>

<event name="QoSEvent">
<Revision>4711</Revision>
<ResponseTime>344</ResponseTime>
...

</event>

<event name="QoSEvent">
<RevisionId>4711</RevisionId>
<ResponseTime>344</ResponseTime>
...

</event>

Figure 5: VRESCo Subscription and Event Publication

fications about that topic. Similar to topic-based subscrip-
tions, the type-based style uses event types for classification.
Even though these two styles are simple, they do not provide
fine-grained control over the events of interest. Therefore,
the content-based style can be used to express subscriptions
based on the actual notification payload.

Since the VRESCo runtime is provided using Web service
interfaces, the subscription interface should also be using
Web services. WS-Eventing [23] represents a light-weight
specification that defines such an interface by providing five
operations: Subscribe and Unsubscribe are used for subscrib-
ing and unsubscribing. The GetStatus operation returns the
current status of a subscription, while Renew is used to re-
new existing subscriptions. Each subscription has a given
duration specified by the Expires attribute. Finally, Sub-
scription End is used if an event source terminates a sub-
scription unexpectedly.

For implementing the event processing mechanism of the
VRESCo runtime, we build upon an existing WS-Eventing
implementation2 which was extended for our purpose. WS-
Eventing normally uses XPath message filters as subscrip-
tion language which are used for matching incoming XML
messages to stored subscriptions. The specification defines
an extension point to use other filter dialects which we used
to introduced the EQLDialect for using EQL queries as sub-
scription language. The actual EQL query is then attached
to the subscription message by introducing a new message
attribute subscriptionQuery.

2http://www.codeproject.com/KB/WCF/WSEventing.aspx

WS-Eventing distinguishes between subscriber (the en-
tity that defines a subscription) and event sink (the entity
that receives the notifications) which are both implemented
using Web services. VRESCo supports notifications sent
per email and written to log files. Therefore, in addition
to the default delivery mode PushDeliveryMode using Web
services, we introduced EmailDeliveryMode and LogDeliv-
eryMode which are attached to the subscription messages.

The subscription process is illustrated in Figure 5. When
the subscription manager receives subscription requests from
subscribers, it first extracts the subscription and puts it in
the subscription storage to be able to retrieve it at a later
time. Then it extracts the EQL subscription query and the
delivery mode from the request and creates a corresponding
Esper listener. This listener is finally attached to the Esper
engine to be matched against incoming events. Further-
more, the subscription manager is responsible for keeping
the subscriptions in the storage and the listeners attached
to Esper synchronized. That means, when subscriptions are
renewed or expire, the subscription manager re-attaches the
corresponding listener or removes them, respectively.

5.7 Notification Mechanisms
Sending notifications can be done in several ways: In the

best-effort model, notifications are lost in case of communi-
cation errors. To prevent such loss, subscribers might send
acknowledgements on receiving notifications. Besides push-
ing notifications towards the interested subscribers, pull-
style notifications enables subscribers to retrieve pending
notifications from the event engine.

VRESCo notifications are sent push-style using email or
listener Web services defined in the subscription. As shown
in Figure 5, the notification manager knows which notifica-
tion type to use depending on the listener attached to the
Esper engine. On a successful match the notification man-
ager first extracts this information from the listener. If the
event sink prefers email notifications, the notification man-
ager notifies connects to an SMTP server. In case of Web
service listeners, the notification manager invokes the corre-
sponding listener Web service provided by the event sink.

5.8 Event Persistence and Event Search
Event notifications are often used when subscribers want

to quickly react on state changes. Additionally, in many
situations it is also important to search in historical event
data. For instance, users might want to get notified if a new
service revision is published into the registry while they also
want to search for the five previous service revisions.

To support such functionality, the VRESCo notification
engine persists all events in an event database and provides
an appropriate search interface for it. As illustrated in Fig-
ure 5, when events are published by an event source (e.g.,
QoS monitor), the eventing service first transform the events
into the internal event format and then persists the events
into the event database. The events can be queried by using
the event search interface which is part of the querying in-
terface used to search for services in registry database. Data
access in VRESCo is done via an ORM layer using NHiber-
nate3. Therefore, the event search builds on the Hibernate
Query Language (HQL).

Since event-based systems often deal with vast numbers of
events, in some situations using relational databases might
not be efficient enough. In such cases, building highly tar-
geted and efficient index structures might be preferred. In
this regard, we plan to use the Vector space engine described
in [17] in addition to a traditional relational event database.
Following the Vector space model, documents (events) are
represented by n-dimensional vectors where each dimension
represents one keyword. The similarity of two vectors then
indicates the similarity of the two corresponding documents
(events) using these keywords. The advantage of the Vec-
tor space model compared to traditional database search is
that the search returns a list of fuzzy matches together with
a similarity rating. Furthermore, the search queries can be
easily executed on multiple distributed vector spaces.

6. EVALUATION
In this section we evaluate the VRESCo event notification

support threefold. Firstly, we show the expressiveness of the
subscription language by using scenarios from the motivat-
ing example in Section 2. Secondly, we present performance
results of the VRESCo event engine, and thirdly, we discuss
further application scenarios enabled by this work.

6.1 Subscription Expressiveness
Considering our TELCO case study, assume the system

administrator of TELCO1 wants to get notified as soon as
some of their service revisions get deactivated. This can be
easily expressed using the following subscription.

select * from RevisionDeactivatedEvent

where Service.Owner.Company = ’TELCO1’

3http://www.nhibernate.org

Another example is to notify about new services. Con-
sider that a service consumer wants to get notified if a new
revision of service 11 is published. This can be written as

select * from RevisionPublishedEvent

where Service.Id = 11

The first two example are intentionally basic. Besides
the fact that UDDI does not provide versioning support,
these examples could also be implemented using existing web
service registry standards.

Furthermore, the VRESCo runtime also considers QoS
attributes of services which are measured by the QoS mon-
itor. Although not natively supported by UDDI, this could
be implemented by storing QoS attributes in correspond-
ing tModels of the UDDI registry as for example illustrated
in [25]. To give a concrete example, assume a service con-
sumer wants to get notified, as soon as the response time of
service revision 17 is greater than 500 milliseconds which is
expressed by the following subscription.

select * from QoSEvent

where Revision.Id = 17

and QoS.ResponseTime > 500

The notification features of current Web service registry
standards mainly provide support for subscribing to static
registry data. The VRESCo eventing engine goes one step
further and also includes runtime information such as bind-
ing and invocation of services. In that way, service providers
are enable to get notified if some service has been invoked.
Furthermore, subscribers are interested in events within a
given period of time which is supported by the sliding win-
dow operator. For instance, getting univariate statistics
(e.g., sum, average, variance, etc.) of property T imestamp
of the last ten subsequent ServiceInvokedEvents concern-
ing service 9 can be expressed as easily as follows.

select * from ServiceInvokedEvent(Service.Id=9)

.win:time(10).stat:uni(’Timestamp’)

Similar to this, the sliding window can also be defined
on the actual time when the events occur. Additionally,
the where clause can be used to express constraints on the
statistical function. For example, the following subscription
fires if the average ResponseT ime of QoSEvents concerning
service revision 47 that occurred within the last six hours is
greater than 350 milliseconds.

select * from QoSEvent(Revision.Id=47)

win:time(6 hours).stat:uni(’QoS.ResponseTime’)

where average > 350

Finally, event patterns may be considered which enables
subscribers to define temporal relations between different
events. For instance, the following subscription fires, if a
new service revision is invoked within ten days after its pub-
lication. A -> B means that event A happens before event
B, the every operator defines which events trigger the pat-
tern to be fired.

select * from pattern

[every publish=RevisionPublishedEvent

-> every invoke=ServiceInvokedEvent

(publish.Revision.Id=invoke.Revision.Id)

where timer:within(10 days)]

To summarize, the subscription language used in our ap-
proach enables to define complex subscriptions using event
patterns, sliding window operators, and statistical functions
on event streams, which cannot be defined using traditional
Web service registry notification mechanisms.

6.2 Performance Results
The Esper documentation [3] gives an overview of the en-

gine’s performance characteristics. According to that infor-
mation, Esper exceeds 500.000 events per second and ex-
hibits linear scalability. This section presents initial per-
formance results of the VRESCo event engine which were
measured by publishing QoS events and varying the number
of interested subscribers to show the scalability of our ap-
proach. The simulation was executed on a standard laptop
with 2Ghz Core 2 Duo CPU, 2GB memory and a 5400rpm
hard disk using .NET 3.5 on Windows XP and self-hosting
WCF services. The results represent the average throughput
taken from 10 subsequent runs of 15 seconds each.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000

E
ve

nt
s

pe
r s

ec
on

d

Number of subscriptions

internal events

Figure 6: Internal Throughput

Figure 6 depicts the throughput of internals events de-
pending on the number of subscriptions. The graphs il-
lustrates that the throughput is high for a small number
of matching subscriptions (around 150.000 events without
subscribers – not shown in the figure) and decreases quickly
with the number of subscriptions. Figure 7 shows that pro-
viding event persistence by storing events into the event
database significantly reduces the throughput to hundreds
of events per second, which mainly is a result of using rela-
tional databases instead of more efficient indexes. We plan
to alleviate this performance decrease by implementing a
scheduler that saves events in the database in batch mode.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

E
ve

nt
s

pe
r s

ec
on

d

Number of subscriptions

internal events

Figure 7: Internal Throughput with Persistence

The performance of the internal events is adequate for
our system since the typical setting consists of a small to
medium number of Web services which minimizes the num-
ber of produced events. Furthermore, most events are trig-
gered by invocations of the VRESCo Web service opera-
tions (e.g., Publishing Service, User Management Service,
etc.) and, therefore, the maximum throughput of internal
events is usually not reached in practical deployments.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000

E
ve

nt
s

pe
r s

ec
on

d

Number of subscriptions

named pipe
tcp

http

Figure 8: External Throughput

Figure 8 depicts the throughput of external events (e.g,
events fired by the QoS monitor) that are published using
the VRESCo notification interface. Since the throughput
using the HTTP binding is only around 50 events per second,
we used additional bindings such as TCP and named pipes
which are also illustrated in this figure. Figure 9 demon-
strates the throughput decrease when persisting the events
into the database.

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

E
ve

nt
s

pe
r s

ec
on

d

Number of subscriptions

named pipe
tcp

http

Figure 9: External Throughput with Persistence

Both figures depict that the throughput using HTTP is
nearly constant, which demonstrates the limit of the under-
lying Web service platform. The performance of external
events (e.g., QoSEvents) is also acceptable for VRESCo
because these events are less frequent than internal events.
Nevertheless, we are working on a more efficient external no-
tification interface, for instance, by writing a custom binding
based on TCP.

6.3 Application Scenarios
Based on the foundational work presented in this paper

there are number of application scenarios that can be built
in a flexible manner when enabling events in SOA environ-
ments. We present two such scenarios below.

• SLAs and Service Pricing. Service pricing models re-
ceive increasing attention as more and more services
become available. In this regard, service usage can
be automatically billed to the user account according
to the agreed pricing model. The pricing is also influ-
enced by the SLA that is defined between the partners,
possibly resulting in penalties if providers cannot meet
the SLAs. Using event information stored in the event
database, the billing information can be easily aggre-
gated for given time periods by issuing queries over the
event store. This allows flexible derivation of pricing
models based on dynamically negotiated SLAs.

• Provenance-aware Applications. Provenance is an im-
portant issue that enables – especially in service-orient-
ed systems – assertions on who did what in applica-
tions or business processes (possibly including human
interaction). Based on the availability of event data,
provenance information can be gathered and used to
proof compliance with certain regulations (e.g., laws,
standardized processes, etc.).

The main benefit of using events to develop such scenarios
is the flexibility that is gained by retrieving the desired infor-
mation from the event database. It does not require building
new components into the existing infrastructure because the
required information already exists in form of events which
can be accessed by leveraging the querying service to get the
relevant information. We plan to implement some of these
scenarios based on the work presented in this paper.

7. RELATED WORK
Event-based systems [12] in general, and the publish/-

subscribe pattern [4] in particular have been the focus of
research within the last years. This research has led to
different event-based architecture definition languages (e.g.,
Rapide [9]) and QoS-aware event dissemination middleware
prototypes [10]. Moreover, data and event stream processing
has also been addressed which lead to different prototypes
(e.g., STREAM [1], Esper [3]).

Approaches to integrate publish/subscribe and the SOA
model led to WS-Notification [15] and WS-Eventing [23].
While WS-Eventing uses content-based publish/subscribe,
WS-Notification provides topics (WS-Topics) as a means to
classify events. The combination of SOA and event-driven
architectures is further addressed by Enterprise Service Bus
(ESB) implementations (e.g., Apache Servicemix4). In con-
trast to our work, ESBs mainly focus on connecting various
legacy applications by using a common bus that performs
message routing, transformation and correlation.

Cugola and Di Nitto [2] give a detailed overview of other
research approaches combining SOA and publish/subscribe.
Furthermore, they introduce a system that aims at adopt-
ing content-based routing (CBR) in SOA. Their approach is
built on the CBR middleware REDS, and provides notifica-
tions following WS-Notification. Service discovery is imple-
mented according to the query-advertise style using UDDI
inquiry messages. The aim of this work is to use CBR to
perform service discovery, while we focus on event process-
ing and notifications in service runtime environments, and,
besides service discovery, also provide support for dynamic
binding and invocation, and QoS attributes.

4http://servicemix.apache.org/

Service registries (e.g., UDDI [14], ebXML [13]) represent
one part of the SOA triangle that is responsible for maintain-
ing a service repository including publishing and querying
functionality. Both UDDI and ebXML provide subscription
mechanisms to get notified if certain events occur within the
service registry. However, these notifications are limited to
the service data stored in the registry and do not include ser-
vice runtime information. Notifications are sent per email
or by invoking listener Web services. Other registry ap-
proaches, such as AWSR [22] and XMethods5, use news feeds
(e.g., RSS and Atom) for dissemination of changing service
repository content. News feeds enable to seamlessly feder-
ate multiple registries, yet, in contrast to our approach, do
not provide fine-grained control on the received notifications
since they follow the topic-based subscription style. Further-
more, similar to UDDI and ebXML, these approaches do not
include service runtime information.

There are several approaches that address search in his-
torical events [5, 8, 19]. Rozsnyai et al. [19] introduce the
Event Cloud system which aims at searching for business
events. Their approach uses indexing and correlation of
events by using different ranking algorithms. The imple-
mentation uses the open source text search engine Apache
Lucene6. In contrast to our approach, the focus of this work
is on building an efficient index for searching in vast numbers
of events whereas subscribing to events and getting notified
about their occurrence is not addressed.

Li et al. [8] present a data access method which is inte-
grated into the distributed content-based publish/subscribe
system PADRES. The system enables to subscribe to events
published in both the future and the past. In contrast to our
work, the focus is on building a large-scale distributed pub-
lish/subscribe system that provides routing of subscriptions
and queries.

Jobst and Preissler [5] present an approach for business
process management and business activity monitoring us-
ing event processing. The authors distinguish between SOA
events regarding violation of QoS parameters and service
lifecycle, and business/process events building upon the Busi-
ness Process Execution Language (BPEL). These events are
fired by receive and invoke activities within a BPEL pro-
cess. In contrast to our work, the focus is on search and vi-
sualization of business events whereas subscribing to events
is not addressed. Furthermore, the different SOA events and
how they are handled is not described in detail.

8. CONCLUSION
Since services change regularly, service consumers want

to get notified about such changes of interest. Event no-
tifications in service registries have been addressed in both
UDDI and ebXML. However, both approaches only consider
changes in registry data and do not include runtime infor-
mation concerning binding and invocation of services. In
this paper, we presented an approach for event notifications
in service runtime environments that is capable of includ-
ing such runtime information, together with QoS attributes.
Furthermore, temporal relation between events can be con-
sidered by using the sliding window operator and event pat-
terns. Our approach was integrated into the VRESCo run-
time that supports dynamic binding and invocation of ser-

5http://www.xmethods.net
6http://lucene.apache.org/

vices, service versioning, and provides a registry database
including publishing and querying services.

The case study used for evaluation shows the expressive-
ness of the subscription language. Furthermore, the perfor-
mance results indicate that the event notification support
can deal with the expected number of events and subscribers.
Finally, we sketched two application scenarios that can be
built based on the approach introduced in this paper.

There are some issues which are not addressed by our
current approach. First of all, we plan to integrate differ-
ent event visibilities to define which event consumers are al-
lowed to receive which events. Furthermore, future work in-
cludes dynamic monitoring of SLAs based on service runtime
events, and other application scenarios as described above.
Finally, data mining methods may be used to retrieve further
information from the event database (e.g., service lifecycle,
user behavior, event patterns).

9. ACKNOWLEDGEMENTS
We would like to thank Ivona Brandic, for her many help-

ful comments, and her insightful perusal of our first draft.

10. REFERENCES
[1] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz,

M. Datar, K. Ito, R. Motwani, U. Srivastava, and
J. Widom. STREAM: The Stanford Data Stream
Management System. In M. Garofalakis, J. Gehrke,
and R. Rastogi, editors, Data Stream Management:
Processing High-Speed Data Streams. Springer, 2008.

[2] G. Cugola and E. Di Nitto. On adopting content-based
routing in service-oriented architectures. Information
and Software Technology, 50(1–2):22–35, Jan. 2008.

[3] EsperTech. Esper Reference Documentation, 2008.
http://esper.codehaus.org/.

[4] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The Many Faces of Publish/Subscribe.
ACM Computing Survey, 35(2):114–131, 2003.

[5] D. Jobst and G. Preissler. Mapping clouds of SOA-
and business-related events for an enterprise cockpit in
a Java-based environment. In Proceedings of the 4th
International Symposium on Principles and Practice
of Programming in Java (PPPJ’06), pages 230–236.
ACM, 2006.

[6] P. Leitner, A. Michlmayr, F. Rosenberg, and
S. Dustdar. End-to-End Versioning Support for Web
Services. In Proceedings of the International
Conference on Services Computing (SCC 2008). IEEE
Computer Society, July 2008.

[7] P. Leitner, F. Rosenberg, and S. Dustdar. DAIOS -
Efficient Dynamic Web Service Invocation. Technical
Report TUV-1841-2007-01, Vienna University of
Technology, 2007. http://www.vitalab.tuwien.ac.
at/~florian/papers/TUV-1841-2007-01.pdf.

[8] G. Li, A. Cheung, S. Hou, S. Hu, V. Muthusamy,
R. Sherafat, A. Wun, H.-A. Jacobsen, and
S. Manovski. Historic Data Access in
Publish/Subscribe. In Proceedings of the Inaugural
International Conference on Distributed Event-Based
Systems (DEBS’07), pages 80–84. ACM, 2007.

[9] D. C. Luckham and J. Vera. An Event-Based
Architecture Definition Language. IEEE Transactions
on Software Engineering, 21(9):717–734, 1995.

[10] S. P. Mahambre, M. K. S.D, and U. Bellur. A
Taxonomy of QoS-Aware, Adaptive
Event-Dissemination Middleware. IEEE Internet
Computing, 11(4):35–44, 2007.

[11] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber,
and S. Dustdar. Towards Recovering the Broken SOA
Trianlge – A Software Engineering Perspective. In
Proceedings of the Second International Workshop on
Service Oriented Software Engineering
(IW-SOSWE’07), pages 22–28, Sept. 2007.

[12] G. Mühl, L. Fiege, and P. Pietzuch. Distributed
Event-Based Systems. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[13] OASIS International Standards Consortium. ebXML
Registry Services and Protocols, 2005.
http://oasis-open.org/committees/regrep.

[14] OASIS International Standards Consortium. Universal
Description, Discovery and Integration (UDDI), 2005.
http://oasis-open.org/committees/uddi-spec/.

[15] OASIS International Standards Consortium. Web
Services Notification (WS-Notification), 2006.
http://oasis-open.org/committees/wsn/.

[16] M. P. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-Oriented Computing: State of
the Art and Research Challenges. IEEE Computer,
40(11):38–45, 2007.

[17] C. Platzer and S. Dustdar. A Vector Space Search
Engine for Web Services. In Proceedings of the 3rd
European IEEE Conference on Web Services
(ECOWS’05), 2005.

[18] F. Rosenberg, C. Platzer, and S. Dustdar.
Bootstrapping Performance and Dependability
Attributes of Web Services. In Proceedings of the
IEEE International Conference on Web Services
(ICWS’06), Sept. 2006.

[19] S. Rozsnyai, R. Vecera, J. Schiefer, and A. Schatten.
Event Cloud - Searching for Correlated Business
Events. In Proceedings of the 9th IEEE International
Conference on E-Commerce Technology and The 4th
IEEE International Conference on Enterprise
Computing, E-Commerce and E-Services (CEC-EEE
2007), pages 409–420. IEEE Computer Society, 2007.

[20] RSS Advisory Board. Really Simple Syndication
(RSS), 2007.
http://www.rssboard.org/rss-specification.

[21] R. Sayre. Atom: The Standard in Syndication. IEEE
Internet Computing, 9(4):71–78, 2005.

[22] M. Treiber and S. Dustdar. Active Web Service
Registries. IEEE Internet Computing, 11(5):66–71,
2007.

[23] W3C. Web Services Eventing (WS-Eventing), 2006.
http://www.w3.org/Submission/WS-Eventing/.

[24] S. Weerawarana, F. Curbera, F. Leymann, T. Storey,
and D. F. Ferguson. Web Services Platform
Architecture : SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging,
and More. Prentice Hall PTR, 2005.

[25] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-Aware
Middleware for Web Services Composition. IEEE
Transactions on Software Engineering, 30(5):311–327,
May 2004.

