Chapter 11

VRESCo - Vienna Runtime Environment for
Service-oriented Computing

Waldemar Hummer, Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and
Schahram Dustdar

Abstract Throughout the last years, the Service-Oriented Architecture (SOA)
paradigm has been promoted as a means to create loosely coupled distributed ap-
plications. In theory, SOAs make use of a service registry, which can be used by
providers to publish their services and by clients to discover these services in order
to execute them. However, service registries such as UDDI did not succeed and are
rarely used today. In practice, the binding often takes place at design time (for in-
stance by generating client-side stubs), which leads to a tighter coupling between
service endpoints. Alternative solutions using dynamic invocations often lack a data
abstraction and require developers to construct messages on XML or SOAP level.
In this paper we present VRESCo, the Vienna Runtime Environment for Service-
oriented Computing , which addresses several distinct issues that are currently preva-
lent in Service-Oriented Architecture (SOA) research and practice. VRESCo reem-
phasizes the importance of registries to support dynamic selection, binding and in-
vocation of services. Service providers publish their services and clients retrieve the
data stored in the registry using a specialized query language. The data model dis-
tinguishes between abstract features and concrete service implementations, which
enables grouping of services according to their functionality. An abstracted message
format allows VRESCo to mediate between services which provide the same feature

Waldemar Hummer
Vienna University of Technology, Austria e-mail: waldemar@infosys.tuwien.ac.at

Philipp Leitner
Vienna University of Technology, Austria e-mail: leitner@infosys.tuwien.ac.at

Anton Michlmayr
Vienna University of Technology, Austria e-mail: michlmayr@infosys.tuwien.ac.at

Florian Rosenberg
CSIRO ICT Centre, GPO Box 664, Canberra ACT 2601, Australia e-mail: florian.
rosenbergl@csiro.au

Schahram Dustdar
Vienna University of Technology, Austria e-mail: dustdar@infosys.tuwien.ac.at

299

300 W. Hummer et al.

but use a different message syntax. Furthermore, VRESCo allows for explicit ver-
sioning of services. In addition to functional entities, the VRESCo service metadata
model contains QoS (Quality of Service) attributes. Clients can be configured to
dynamically rebind to different service instances based on the QoS data. The paper
presents an illustrative scenario taken from the telecommunications domain, which
serves as the basis for the discussion of the features of VRESCo.

11.1 Introduction

In the course of the last years, software engineering research and practice have put
remarkable focus on the Service-Oriented Architecture (SOA) [20] paradigm, which
propagates the use of services — autonomous applications made available in a com-
puter network using standardized interface description and message exchange — as
a means to create decoupled, distributed, composite applications in heterogeneous
environments. Web Services [29] represent the most common way of implementing
SOAs. Conceptually, SOA involves three main actors: 1) service providers imple-
ment services and make them available at a certain location (endpoint) in the net-
work; 2) service registries store information about services, and providers can pub-
lish their services in such registries; 3) service consumers discover (find) services by
querying a service registry, bind to the obtained service references and execute the
services’ operations. This model of three collaborating actors is often referred to as
the SOA triangle. It has been argued that currently the SOA triangle is actually bro-
ken [16], since the binding between consumer and service provider often happens at
design-time and service registries are rarely used in practice. This is largely due to
the limited success of service registry standards such as UDDI [19].

Furthermore, dynamic binding and invocation of services is often only supported
for services having the same syntactical (or technical) interface. Since there is no
standard mechanism to describe the logical equivalence of service operations us-
ing service metadata, service consumers are experiencing difficulties determining
whether two service implementations actually perform the same task. Even if clients
are aware of the concrete service endpoints that are available for a certain task, the
problem of different syntactical interfaces remains. One possibility would be to pro-
vide input message templates for all possible service versions at design time. How-
ever, a more dynamic and flexible approach to mediation between diverse interfaces
is desirable. The same applies to cases in which different versions of one and the
same service exist. So far, service versioning is not directly supported by service
registries such as UDDI. An end-to-end solution for service versioning, which al-
lows to transparently switch to the latest version of a service, is desirable. Dynamic
service selection and binding should also be possible based on other non-functional
attributes, such as the availability or response time.

In this chapter we address some of the issues and shortcomings that are prevalent
in current SOA research and practice. We present VRESCo, the Vienna Runtime En-
vironment for Service-oriented Computing. The discussion of the capabilities of the

11 VRESCo - Vienna Runtime Environment for Service-oriented Computing 301

VRESCo framework is based on an illustrative example scenario. The scenario con-
tains a number of challenges for Service Oriented Computing (SOC). We identify
and describe these issues and subsequently present appropriate solutions based on
VRESCo. VRESCo has in part been developed within the FP7 Network of Excel-
lence project S-Cube, within work package WP-JRA-2.3 (Self-* Service Infrastruc-
ture and Discovery Support). Within S-Cube, Vienna University of Technology is
the beneficiary responsible for the development of the VRESCo prototype.

The remainder of this paper is structured as follows. In Section 11.2 we describe
the example scenario that serves as the basis for the discussion of VRESCo. Sec-
tion 11.3 comprises the main part of the paper, in which we describe the concepts
and features of VRESCo. In this part, we always try to establish a link between
the abstract concepts and the reference implementation of the scenario. In Section
11.4 we discuss existing work related to VRESCo. Since the VRESCo framework
embraces a number of rather distinct research areas, the related work discussion can
only focus on a few selected aspects. The paper concludes with a summary and final
remarks in Section 11.5.

11.2 Example Scenario

To demonstrate the capabilities of the VRESCo framework, we consider an example
scenario taken from the telecommunications domain. The scenario models a process
that allows customers to port a phone number from their current CPO (cell phone op-
erator), say CPOI, to another operator, say CPO2. The idea behind number porting
is that customers are able to choose freely between providers of telecommunica-
tion services, without having to give up the phone number of their existing contract.
When a customer decides to switch to provider CPO2, she signs the new contract
and is temporarily assigned a new phone number (TempNumber). In the following,
the customer (or, in fact, the new provider CPO2 acting on behalf of the customer)
instructs her old provider, CPO1, to issue the number porting process and transfer
the existing number (DesiredNumber) to provider CPO2.

Figure 1 illustrates the scenario process as well as the internal and external services
that are involved. For the sake of brevity, error handling routines are not depicted in
the figure. However, each process activity includes reasonable integrity checks con-
cerning the input parameters and the current execution state. Input to the process are
two phone numbers, the existing number with CPO1 (DesiredNumber), and the
temporary number with CPO2 (TempNumber) and the time for which the number
porting is scheduled.

The first step in the process is to contact a CRM (Customer Relationship Manage-
ment) Service in order to look up the customer that is associated with Desired-
Number. Secondly, the partner CPO is determined dynamically. For that purpose,
each CPO operating on the market publishes a CPO Service that can be used to query
whether a certain number belongs to that CPO. The one CPO answering with a pos-
itive response is the partner for this process execution. Next, the Number Porting

302 W. Hummer et al.

Services Process Services
Internal : External

. _____ Lookup
oM Servn [+
Lookup
Partner ™

Check
Portability

CPO Service
CPO Service
CPO Service

Number Porting
Service

x",

Port
Number

Billing Service {a---+-

SMS Service l :

Fig. 11.1: Example scenario

Service of the partner CPO is invoked to check the portability status. In case porting
is not possible at the time, appropriate measures need to be taken. Assuming that no
error has occurred, the process can now execute two activities in parallel: perform-
ing the actual number porting with the partner Number Porting Service and issuing
a bill using the internal Billing Service. As soon as both activities are finished, a
report is sent to the customer via the internal Email Service and one instance of the
(replicated) SMS Service.

11.2.1 Involved Web Services

Table 1 lists the Web services involved in the scenario, as well as the operations that
are provided by these services.

Since the CRM Service is a core element not only in the number porting process,
but in the IT architecture of the telecommunications provider as a whole, its re-
quirements have changed in the past and will continue to evolve in the future. Not
only the behavioral aspects change, but the renewed implementations often employ
a different service interface. This raises the demand for explicit service versioning
support.

For the CPO Service and the Number Porting Service, one instance (replica) exists
for every CPO involved in the scenario. However, the replicas are not entirely iden-
tical: although they require the same (abstract) parameters and generate the same
result, the concrete syntax (i.e., XML schema) of the exchanged messages is slightly
different for each CPO.

11 VRESCo - Vienna Runtime Environment for Service-oriented Computing

Table 11.1: Web services involved in the example scenario

303

CRM Service
Operation: GetCustomer Input |Number: PhoneNumber
P) Output|MatchingCustomer: Customer
CPO Service
— . Input |Number: PhoneNumber
Operation: IsRegisteredNumber Output [sRegistered: boolean
Number Porting Service
. - Input |TempNumber: phone number
Operation: CheckPortability DesiredNumber: phone number
Output |PortingPossible: porting status
. . Input | TempNumber: phone number
Operation: SchedulePorting DesiredNumber: phone number
ScheduledTime: timestamp
Output|Result: porting result
Billing Service
. . Input | TheCustomer: Customer
Operation: IssueBill ServiceToBill: PortingResult
Notification Services (Email Service, SMS Service)
Operation: NotifyCustomer |Input |TheCustomer: Customer

Consider the operation SchedulePorting of the Number Porting Service. The
schemas of the different input messages for three operators (CPO1, CPO2, CPO3)
are illustrated in Figure 11.2. The data contained in each of the messages is the
existing temporary number, the desired number and the time that the number
porting shall be scheduled for. For CPO2 and CPO3, the country code (e.g., 43 for
Austria) and the area code (e.g., 686) of the phone numbers need to be specified
separately, while for CPO1 this information is included in the phone number
string (e.g., “0043 686 1234567"). Since CPO2 expects only one CountryCode
argument, it is expected that the temporary number and the desired number are
from the same country. The scheduled time is expressed as a timestamp and is of
type string for CPOI1 and of type long for CPO2 and CPO3. Similarly, the
CheckPortability operation of the three CPOs has slightly different message
schemas, which will not be discussed in more detail for the sake of brevity.

The SMS Service, which is heavily used across the overall system, is replicated
in several instances. In order to maximize throughput, the requests to this service
should be distributed to the deployed replicas. Hence, the request for SMS notifi-
cation at the end of the number porting process should be handled by the service
instance which currently shows the best performance.

11.2.2 SOC Challenges

To sum up, the presented number porting scenario addresses the following SOC
challenges:

304 W. Hummer et al.

Number Porting Service Number Porting Service Number Porting Service
(CPO1) (CPO2) (CPO3)
SchedulePorting SchedulePorting SchedulePorting

TempNumber: string | CountryCode: int TempNumber

CountryCode: int
AreaCode: int

| Number: int

TempAreaCode: string

| DesiredNumber: string |

DesiredAreaCode: string DesiredNumber

CountryCode: int

DesiredNumber: string AreaCode: int

| ScheduledTime: long |

ScheduledTime: long

ScheduledTime: string | | TempNumber: string

Fig. 11.2: Input messages of operation SchedulePorting

» Service Metadata: It is desirable to have a data model for describing the ser-
vices that participate in the system. The description should cover both func-
tional and non-functional characteristics. Functional attributes include the ser-
vices’ technical interface in the form of its operations and their input and output
parameters. Non-functional characteristics concern Quality of Service (QoS) as-
pects such as the performance, security or price of a service. To account for
services which perform similar or identical tasks, the description of the abstract
functionality provided by a service should be separated from the definition of
concrete endpoints. This is particularly required for the replicated versions of
the SMS Service and the different versions of the Number Porting Service.
Service Versioning: When services evolve over time, it is important that new
versions of a service can be published and easily integrated into the existing
process. Ideally, the integration should happen automatically and transparently,
and it should be possible to either always bind to the latest version of a service
or to explicitly switch back to older versions of a service. In the scenario, this
is particularly important for the CRM Service, which exists in different versions
and is subject to ongoing changes.

Service Interface Mediation: Each CPO participating in the example scenario
uses a slightly different input message schema for the operation Schedule-
Porting of the Number Porting Service. The demand for transparently ex-
changing endpoints of this operation results in the necessity for mediation be-
tween service interfaces. To that end, the commonalities of the different con-
crete interfaces provided by CPO1, CPO2 and CPO3 have been identified and
combined in an abstract interface description of this operation. For instance,
the abstract interface specifies that the SchedulePorting operation requires

11 VRESCo - Vienna Runtime Environment for Service-oriented Computing 305

two telephone numbers and one timestamp (see Table 11.1). Based on the ab-
stract interface definition, it should be possible to define for each concrete im-
plementation how the elements of the abstract interface can be mapped to the
elements of the concrete interface. After defining the mapping at design time,
the conversion should be conducted automatically at runtime.

Dynamic Service Invocation: Since hardwired solutions of service invocations
are inflexible and usually fail in case of even the smallest modification to the
system (such as changing the value of an XML namespace or extending an XML
schema with an additional element), it is advisable to reach a maximum level of
dynamicity. Ideally, the message exchange should be expressed in an abstracted,
high-level way and the actual invocations and message transformations should
be performed by an underlying framework.

Service Rebinding: Related to service versioning and dynamic invocation, re-
binding denotes the capability of a client to bind to a new service or service
interface. Rebinding may happen at different occasions — either in periodic in-
tervals, on demand or event-based. For instance, the CRM Service is frequently
changed and hence its clients’ binding should be reconsidered periodically. Fur-
thermore, the scenario is dynamic in the sense that the version of an existing
Number Porting Service may change and that new partner CPOs may join the
market or existing CPOs may cease to exist. As soon as any changes in the
structure of the system arise, clients shall be notified of the modifications and
rebind to the target service(s).

QoS-Based Service Selection: The SMS Service, which is used to send a notifi-
cation to the customer at the end of the number porting process, exists in several
instances to serve the high demand for this functionality. To offer the clients a
good performance of this service, requests should be distributed among all de-
ployed replicas. The decision which replica to use is based on QoS (Quality of
Service) characteristics, e.g. the availability of the service and the response time
of the operation NotifyCustomer.

11.3 The VRESCo Solution

In the following we present the VRESCo framework, based on a reference imple-
mentation of the number porting scenario described in Section 11.1. This section is
divided into several subsections, each of which addresses a particular aspect of the
SOC challenges mentioned in Section 11.2. Furthermore, the VRESCo features are
applied to the concrete solution of the example scenario.

11.3.1 System Overview

As has been mentioned in the introductory section of this chapter, the VRESCo plat-
form is an effort to compensate issues and shortcomings in current SOA solutions.
VRESCo strives to recover the “broken” SOA triangle [16] by focusing on the use of

306 W. Hummer et al.

service metadata published in a registry, as well as dynamic binding and invocation
of services.

An overview of the VRESCo architecture is depicted in Figure 11.3. The system
is implemented in C# and makes use of the Windows Communication Foundation
(WCF) [11]. The VRESCo Runtime Environment is a server application that is in-
voked using the VRESCo Client Library. The interfaces of the server components are
exposed as Web services and the communication between clients and the VRESCo
runtime uses the SOAP [28] messaging protocol.

VRESCo Runtime Environment
VRESCo Client Library Query _
SOAP| Interface
; Client - = .
~— Query Engine
| Daios | Factory | O— Query Eng [
Notification
Interface
S Notification
(O——= . -
€ Engine
QoS Monitor |.SOAP | Publishing {5 9 g A
invoke Interface] - Registry
@ Publishing/ 5 Database
[i—
measure 2 Metadata [O
Service
Metadata
Interface
. Management
P - [
Services O— Service
Management
Interface _

Fig. 11.3: VRESCo architecture overview, adapted from [15]

The VRESCo Runtime Environment is made up of different sub-components:

The Query Engine allows to search for any entity that is stored within the run-
time. To that end, a specialized query language (VRESCo Query Language,
VQL) is offered, which will be further discussed in Section 11.3.3.

With the aid of the Notification Engine clients are able to subscribe for notifica-
tion of events that occur during execution of the runtime [13].

The Publishing/Metadata Service offers two interfaces, the Metadata Interface
for adding entries to the metadata model and the Publishing Interface for regis-
tering the description of a service implementation using the service model. The
distinction between these to models will be clarified in Section 11.3.2.

The Management Service is responsible for storing user information and han-
dling the user access rights.

Additionally to the aforementioned parts, the VRESCo runtime employs a fifth core
component, the Composition Engine. However, a discussion of the composition
mechanism is out of the scope of this paper and the interested reader will find a
detailed description in [22]. All communication is secured using an Access Control

11 VRESCo - Vienna Runtime Environment for Service-oriented Computing 307

layer that checks user credentials (username, password), handles encryption and ap-
plies signatures to the exchanged messages.

On the client side, Daios [9], a framework for dynamic and asynchronous service
invocation, is used to conduct the message exchange with the involved Web services.
Daios uses an abstracted message format, the Daios Message, which provides for
protocol-independence and support for both SOAP and REST based services. The
dynamic messaging approach will be briefly presented in Section 11.3.6. The Client
Factory is used to instantiate proxy objects that communicate with the interfaces
of the VRESCo Runtime Environment. Since these interfaces are exposed as Web
services, SOAP is used as the messaging protocol between clients and the runtime.

Finally, since VRESCo allows for selection and composition of services based on
Quality of Service (QoS) attributes, a QoS Monitor [14] is deployed as a standalone
component, which regularly measures the availability, performance and accuracy
of the target Web services. The QoS Monitor feeds back the acquired measurement
values to the VRESCo runtime via the Publishing Interface. The runtime aggregates
the stored measurements and calculates average values.

11.3.2 Metadata Model and Service Model

VRESCo uses a metadata model to describe functionalities offered by Web services
in an abstract way. A category is a named entity that describes the general purpose
of services and serves as an umbrella item for all other entities in that domain (e.g.,
the VRESCo category of our example scenario is named TelcoSystem). A cate-
gory contains an arbitrary number of features, which describe a concrete action in
the system. In the scenario, a feature named PortNumber describes the action of
actually performing the porting with a target partner CPO. As illustrated in Figure
11.4, the base element in the model is the abstract Concept, which is specialized
by the three sub-entities Data Concept, Predicate and Feature. All concept entities
are composable, i.c., a concept can be derived from another concept. Data concepts
define the data types that occur in the system and are either atomic (string, number,
etc.) or composed of other data concepts. For instance, in the number porting sce-
nario we make use of a data concept named PhoneNumber, which itself consists
of three elements named CountryCode, AreaCode and Number.

Additionally, the metadata model allows for the definition of Preconditions and Post-
conditions that need to be fulfilled when a feature is executed. Both types of con-
ditions are associated with a number of Predicates, which may each have multiple
Arguments. The arguments are described by an associated data concept. Two types
of predicates are distinguished: Flow Predicates indicate constraints related to the
data flow such as data required or produced by a feature (predicates requires
and produces); State Predicates express global constraints that need to be ful-
filled. For a more detailed description of the metadata model we refer to [15].

The service model constitutes the information about concrete services managed by
VRESCo. A service is available in one or more revisions. Revisions are the basis for

308 W. Hummer et al.

derivedFrom

o]

/\
[|

DataConcept| | Predicate |

Feature

consistsOf

Category
State Predicate |

isSubCategory

| Flow Predicate

Fig. 11.4: Service metadata model, adapted from [15]

| Category | | Feature | |Data Concept|
T e |
<771 Function ;e
Foremeeemmeeeeesd Service Metadata Model
* * * Service Model
| Service | | Operation ll—*| Parameter |
1 * 1
* 1.* *
|I|_‘ Revision (] | QoS |
1
*
QoS

Fig. 11.5: Mapping between service model and metadata model, adapted from [15]

service versioning, which will be discussed in more detail in Section 11.3.4. Figure
11.5 depicts the mapping between the service metadata model and the (concrete)
service model. Services are mapped to categories, a service operation is one con-
crete implementation of a feature (note that one feature may be implemented by
several different operations) and operation parameters are mapped using data con-
cepts. The mapping function between the latter is the basis for the VRESCo service
mediation, which will be further discussed in Section 11.3.7.

In addition to the functional characteristics of services, VRESCo also saves non-
functional attributes in the form of QoS attributes. Operation-specific QoS data are
attributes such as response time or accuracy, whereas attributes such as latency ap-
ply to a service revision. A more detailed description of QoS attributes is given in
Section 11.3.5.

11 VRESCo - Vienna Runtime Environment for Service-oriented Computing 309

11.3.3 Service Querying

The VRESCo Querying Language (VQL) constitutes an interface to query the data
stored in the registry. VQL queries are based on the entities and relations of the data
model presented in Section 11.3.2. In that sense, the query language abstracts from
the concrete database schema that is used to store the model entities. Following
the Query Object Pattern [6], VQL provides an API to programmatically construct
queries from a set of criteria. Criteria are defined either as mandatory using the
function Add or as optional using the function Match. Mandatory criteria must be
fulfilled for all elements of the result set that is obtained by executing the query,
whereas optional criteria are treated differently depending on the querying strategy:

e The EXACT querying strategy treats all criteria as mandatory, regardless of
whether they are Add or Match criteria.

e With PRIORITY querying, each Match criterion is prioritized using a numeric
weight attribute. The higher its weight, the more importance a criterion receives
during the selection process of the query engine. The final result is sorted by
the sum of priority values. For instance, a Match criterion with priority weight
4 takes precedence over the sum of two criteria with weights 1 and 2, because
4> (1+2).

e The RELAXED strategy is a specialized case of PRIORITY querying, where the
priority weight of each Match criterion is 1. This method simply distinguishes
between mandatory and optional parameters and sorts the final result list based
on the number of optional (Match) criteria that are fulfilled.

Upon execution, VQL query objects are internally converted to an according SQL
query string and finally executed on the underlying database.

1 var querier = VRESCoClientFactory . CreateQuerier(”username”, “password”);
2 var query = new VQuery(typeof(Service));

3 query .Add(Expression .Eq(”Category . Features .Name”, ”"PortNumber”));

4 query .Add(Expression .Eq(”Revisions .IsActive”, “true”));

5 var list =

6 querier . FindByQuery (query ,QueryMode . Exact) as IList<ServiceRevision >;
7
8

/! create client proxy for each Number Porting Service
9 foreach(var service in list) {

10 query = new VQuery(typeof(ServiceRevision));

11 query .Add(Expression .Eq(”Service .ID”, service .ID));

12 query .Add(Expression .Eq(”Tags.Property .Name”, "LATEST”));

13 DaiosProxy proxy = querier.CreateRebindingProxy(query ,

14 QueryMode . Exact, 1, new PeriodicRebindingStrategy (1000%60x60));
15

16}

Listing 11.1: VQL Example Query Using EXACT Strategy

Listing 11.1 illustrates an initialization routine of the number porting scenario which
obtains the references to the Number Porting Services of the involved CPOs and
creates a client for each instance. Firstly, a Querier instance is created with the
aid of the VRESCo client factory. For the creation of the VQuery object in line 2, a

310 W. Hummer et al.

parameter is used to specify the expected return type of the result (Service).Lines
3 and 4 add criteria to the query, one related to the name of the feature the service
implements (needs to contain the string “PortNumber”) and the second mandating
that at least one revision of this service needs to be active. The query uses an EXACT
query strategy and hence treats all criteria as mandatory. In lines 5 and 6 of the
code listing, the query is executed and the result is received as a list of services.
Subsequently, the code loops over all result entities and creates a new VQuery that
expects ServiceRevision results (line 10). The criterion in line 11 is used to
have the service identifier (ID) of the result match the ID of the service in the current
loop execution. Line 12 specifies that only the latest version of a service should
be returned (more details on modeling service versions with VRESCo is given in
Section 11.3.4). Finally, the constructed query object serves as the basis for creating
a DaoisProxy that is utilized to perform the dynamic service invocations later
on (see Section 11.3.6). More sophisticated VQL examples that include alternative
querying strategies and Match criteria will follow in the remaining parts of this
chapter.

11.3.4 Service Versioning

Just as any other IT artifact may evolve over time, Web services are also subject
to changes made by the service providers. For example, services may be extended
by new functionalities, adapted to changed environments or restructured to better
fit the overall IT architecture. The process of services being modified over time is
collectively referred to as service evolution. When a service evolves, usually the
older versions of this service are still available in order not to break the operability
of existing clients. Hence it is an important requirement for service registries to
handle service evolution and to document the changes of service interfaces. Current
registries such as UDDI [19] do not directly support different versions of the same
service.

The distinction between services and revisions in the VRESCo service model al-
lows for explicit versioning of services [8]. The service model defines tags, which
describe a revision. VRESCo defines six default revision tags, while custom tags can
also be added by service providers. Table 11.2 lists the default tags, their meaning
and who they are assigned by. The tags INITIAL, HEAD and LATEST are automat-
ically assigned by the VRESCo runtime, whereas all other tags are added manually
by the provider.

Relationships between service versions can be visualized as a service version graph,
where the nodes constitute service revisions and directed edges point from a revi-
sion node to all its successor revisions. Figure 11.6 depicts the relation between the
revisions of the CRM Service. The first version (v/) is tagged INITIAL. For the
second version, the Customer data type has been extended by an additional field
and the implementation has been thoroughly tested such that v2 deserves the tag
STABLE. Version 3 has been implemented as a WCF service [11] — making use of
the integrated security and encryption framework — and is therefore tagged wcf. Ver-

11 VRESCo - Vienna Runtime Environment for Service-oriented Computing 311

Table 11.2: Predefined service revision tags

Tag Description Assigned by
INITIAL|The first version of this service VRESCo
STABLE |A well-tested production-level service version provider
HEAD The most recent version in a branch VRESCo
LATEST |[The most recent version in the entire version graph; implies HEAD| VRESCo
DEPREC [The version is deprecated and should not be used anymore provider
OFF The version has been taken offline and is not available anymore provider

sion 4, on the other hand, is an unsecured version of the CRM Service, realized with
JAX-WS !. Finally, revision v5 represents an extension of the WCF implementation.
This is the last revision in the WCF branch and also the most recent version in the
version graph.

Services _
CPO Service | | CRM Service | | Billing Service| |:|
v1,INITIAL
. v2,STABLE
Revisions
v3,wef vé,jaxws,HEAD
v5,wcf,HEAD,LATEST
\

Fig. 11.6: CRM Service version graph

11.3.5 QoS-Based Service Selection

As mentioned in the number porting scenario description (see Section 11.2), the
SMS Service, which is used to send a notification to the customer at the end of the
number porting process, is replicated (i.e., exists in several instances) to serve the
high demand for this functionality. Ideally, the requests should be equally distributed
to all replicas to avoid the situation that one service instance becomes overloaded.

The VRESCo runtime stores QoS data that apply to both service revisions and oper-
ations. The QoS information may be either added manually using the Management
Service or measured automatically with the aid of the QoS Monitor. VRESCo cur-

'https://jax-ws.dev.java.net/

312 W. Hummer et al.

rently defines the QoS attributes that are listed in Table 11.3 [15]. While Price, Re-
liable Messaging and Security are static values that are manually entered by service
providers, the remaining attributes are calculated by the QoS Monitor. Latency de-
notes the (average) time required to transport a request over the network. Response
Time is the sum of latency for request and response plus the execution duration of the
service operation. Availability is the time during which the service is up and running,

Table 11.3: Predefined QoS attributes

Attribute Type Unit Applies To
Price static $ / invocation |Revision, Operation
Reliable Messaging | static {true, false} Revision
Security static | {None, X.509} |Revision, Operation
Latency calculated ms Revision
Response Time calculated ms Operation
Availability calculated percent Revision
Accuracy calculated percent Revision, Operation
Throughput calculated |invocations / sec [Revision, Operation

expressed as the percentage of the total time. The probability that a service produces
a valid result is the Accuracy, which is calculated as the ratio of successful requests
to total requests. Finally, Throughput is the number of requests a service can pro-
cess during a given period of time. The QoS model is extensible and enables service
providers to define and publish custom QoS data in addition to the aforementioned
QoS attributes.

Since the QoS entities are part of the service model, QoS-related criteria can be in-
cluded in VQL queries. Listing 11.2 shows the VRESCo implementation of select-
ing the “most suitable” SMS Service instance. Most suitable in this context means
that the service should have

1. most importantly, a high availability (> 90%),
2. the smallest possible response time,

a. less than 100 ms (priority weight 3), or
b. less than 200 ms (priority weight 2), or
c. less than 500 ms (priority weight 1);

3. if possible, an accuracy of at least 80%.

We assume that the combination of points 2 and 3 has the same weight as point 1.
Listing 11.2 displays the VQL query construction necessary to achieve this specific
service selection. The Add criterion in line 2 mandates that the service name must
include the String “SMSService”. The Match operation in the following two lines
specifies that with a priority weight of 5 the availability should be greater than 0.9
(90%). Note that the ’&’ operator is a shortcut for an And operation. With the aid
of the following 3 statements, a response time of less than 100, 200 or 500 ms is
targeted, with a priority weight of 1 each. Therefore, in sum, the priority weight of

11 VRESCo - Vienna Runtime Environment for Service-oriented Computing 313

a response time of less than 100 ms is 3 and the priority weight of a response time
of less than 200 ms is 2.

1 var query = new VQuery(typeof(ServiceRevision));

2 query .Add(Expression .Like(”Service .Name”, "%SMSService%”));

3 query.Match(Expression .Eq(”QoS.Property .Name”, ”Availability”) &
4 Expression .Gt(”QoS.DoubleValue”, 0.9), 5);

5 query .Match(Expression .Eq(”QoS.Property .Name”, "ResponseTime”) &
6 Expression .Lt(”QoS.DoubleValue”, 100.0), 1);

7 query .Match(Expression .Eq(”QoS.Property .Name”, "ResponseTime”) &
8 Expression .Lt(”QoS.DoubleValue”, 200.0), 1);

9 query .Match(Expression .Eq(”QoS.Property .Name”, "ResponseTime”) &

10 Expression .Lt(”QoS.DoubleValue”, 500.0), 1);

11 query .Match(Expression .Eq(”QoS.Property .Name”, ”Accuracy”) &

12 Expression .Ge(”QoS.DoubleValue”, 0.8), 2);

13

14 var list =

15 querier . FindByQuery (query ,QueryMode . Priority) as IList<ServiceRevision >;
16 var bestServicelnstance = list[0];

17 ... /]l perform SMS notification using bestServicelnstance

Listing 11.2: VQL Query Using QoS Attributes

Assume that five SMS Service instances are deployed in the example scenario. A
illustrative snapshot of QoS values at a certain point in time is given in Table 11.4.
Values that fulfill the QoS criteria named above are printed in bold text. Total Score
is the sum of priority weights of those QoS criteria that are fulfilled by a service.
SMS Service 1 is ranked first since it has the highest total score of 8 points. Services
2 and 5 are ranked second with 7 points each, and the services 4 (5 points) and 3 (4
points) take positions 3 and 4, respectively.

Table 11.4: Snapshot of QoS characteristics of SMS service instances

Service Availability | ResponseTime |Accuracy | Total Score|Rank
SMS Service 1 091 413 ms 080 |5+1+2=8| 1
SMS Service 2 0.95 194 ms 078 |[5+2+0=7| 2
SMS Service 3 0.81 156 ms 1.00 |0+2+2=4| 4
SMS Service 4 0.85 96 ms 085 [0+3+2=5| 3
SMS Service 5 0.97 527 ms 093 ([5+0+2=7| 2

The VRESCo query engine internally performs the same calculation: for each
Match criterion m in a query with PRIORITY (or RELAXED) query strat-
egy, it determines for each element e in the universal set (in this case, all
ServiceRevision entities whose name contains the string “SMSService”)
whether e fulfills criterion m, and adds the priority value of m to the score of e. As
mentioned in Section 11.3.3, this calculation is actually performed by constructing
a corresponding SQL statement, which is executed on the underlying DBMS. The
final result is ordered by decreasing score of the elements. Hence, after execution of
the query, the variable 1ist in Listing 11.2 contains the service revision objects in
the order of their QoS score. The first element of the list is assigned to the variable

314 W. Hummer et al.

bestServiceInstance, a reference to SMS Service I, which is subsequently
used to perform the SMS notification.

11.3.6 Dynamic Service Invocation

Web Service invocations in VRESCo are executed using the Daios framework [9]. In
contrast to many other Web service client frameworks that rely on code generation
and client-side stubs to invoke services (such as Apache Axis 2 2), Daios seeks to
provide stub-less communication with Web services. Furthermore, the Daios frame-
work is protocol-independent in the sense that it transparently distinguishes and
handles SOAP and REST invocations. This is achieved by using an abstracted Daios
message format, which describes request and response messages in a high-level way,
leaving protocol-specific details to the lower, internal layers of Daios. In the follow-
ing, we briefly present the dynamic binding capability of VRESCo and discuss the
message-centric invocation approach of Daios.

11.3.6.1 Dynamic Binding

The ability of clients to dynamically bind to services is often claimed to be one of
the key advantages of SOA. However, in practice binding often happens at design
time using generated stubs. Daios overcomes this issue and provides a service invo-
cation framework that is build upon the dynamic invocation principle. The process
of binding to a service involves several steps. Firstly, the client needs to retrieve
and parse the service interface description, or service contract. WSDL is the stan-
dard description language for Web services that use SOAP [28] as the messaging
protocol, whereas WADL [24] (Web Application Description Language) is often
used to describe REST-based services. Typically both WSDL and WADL parsing
involves processing XML schema definitions (XSD) that define the data types of the
exchanged documents. Next, a service proxy is created from the in-memory repre-
sentation of the service contract. When the client issues an invocation, the provided
input is matched with the message definitions contained in the service contract.

The frequency and occasion at which binding takes place determine the accuracy
of the proxy, but also influence the runtime performance since rebinding causes a
certain overhead. VRESCo distinguishes the following rebinding strategies:

e Fixed: Fixed proxies perform binding upon creation but never rebind to the
target service. They are used in scenarios where rebinding is not required.

e Periodic: With this strategy, the proxy reconsiders the binding periodically
in fixed intervals, which is inefficient if the frequency of invocations is low.

e OnInvocation: This strategy causes the proxy to update its binding prior to
every service invocation. This ensures that the binding is always up to date but
obviously results in a large overhead.

2 http://ws.apache.org/axis2/

11 VRESCo - Vienna Runtime Environment for Service-oriented Computing 315

e OnDemand: If rebinding happens upon client request, the overhead is reduced
in comparison to Periodic and OnInvocation, with the drawback that the
binding is not always up to date.

e OnEvent: This rebinding strategy combines the advantages of all strategies
by making use of the VRESCo Event Notification Engine [13]. Clients enter
subscriptions that define in which situations rebinding should take place. If re-
binding is due, the VRESCo runtime triggers a corresponding event notification.
A disadvantage of this strategy is that clients need to expose a callback service
in the network.

The implementation of the number porting scenario makes use of different rebind-
ing strategies. The proxy for the CRM Service is updated periodically every hour
(Periodic), since this service is subject to frequent changes. A Periodic strat-
egy is also applied for the Number Porting Service. Because the Email Service and
the Billing Service are very stable and have not evolved over the last years, the mes-
sage exchange with these services is conducted using a Fixed client. In order to
select the best-performing instance of the SMS Service in each execution of the num-
ber porting process, an OnInvocation proxy is used for invoking the Notify
operation. A thorough performance evaluation of the different rebinding strategies
has been carried out in [15].

11.3.6.2 Message-Centric Communication

Daios follows a message-oriented approach, i.e., client developers do not “invoke
operations” but send and receive messages to and from the service. Daios uses a
special message format which abstracts messages from their XML representations.
The Daios message represents objects as a collection of name/value pairs. The value
of one such pair entry may be either 1) a simple type (string, integer, .. .),2) an array
of simple types or 3) a message or an array of messages (recursive construction).

DaiosProxy proxy = ...; // get proxy for service of partner CPO

1
2

3 var request = new DaiosMessage ();

4 var tempNumber = new DaiosMessage();

5 tempNumber. Set (”CountryCode”, 43);

6 tempNumber. Set(”AreaCode”, 686);

7 tempNumber. Set(”Number”, 1234567);

8 var desiredNumber = new DaiosMessage ();

9 desiredNumber.Set(”CountryCode”, 43);

o desiredNumber.Set(”AreaCode”, 677);

11 desiredNumber.Set(”Number”, 87654321);

12 request.Set(”TempNumber”, tempNumber);

13 request.Set(”DesiredNumber”, desiredNumber);
14 request.Set(”ScheduledTime”, 1267124400);

16 DaiosMessage response = proxy .RequestResponse(request);

Listing 11.3: Construction of Daios Messages

Listing 11.3 shows how a request to the operation SchedulePorting of the Number
Porting Service is constructed using Daios. The service selection and proxy cre-

316 W. Hummer et al.

ation has been illustrated in Listing 11.1 in Section 11.3.3. Now we assume that
the process execution has just determined the partner CPO in the activity Lookup
Partner and that in line 1 of Listing 11.3 we obtain a reference to the Daios proxy
for this partner. To construct the desired request message, three Daios messages are
instantiated: a “container” Daios message named request and two message in-
stances tempNumber and desiredNumber. In lines 5-7 and 9-11, respectively,
the simple values CountryCode, AreaCode and Number are set. The recursive
construction of Daios messages is illustrated in lines 12 and 13.

Once the DaiosMessage has been constructed, the DaiosProxy instance is used
to perform a synchronous service invocation (see line 15 in Listing 11.3). Note that
this proxy follows a Periodic rebinding strategy and reconsiders its binding ev-
ery 60 minutes in order to always bind to the most recent version of the service
(see Listing 11.1). Besides the “request response” invocation flavor, Daios also sup-
ports asynchronous communication (“fire and forget”, “poll object” and “callback™).
The achievement of the Daios framework is that all information necessary to con-
struct the final SOAP message (qualified operation names, XML namespaces, etc.)
is transparently collected from the target service’s WSDL document in the back-
ground. Analogously, the SOAP response from the service is internally converted
back to the high-level Daios message format. In Section 11.3.7 we will discuss the
internals of service invocations in VRESCo and how transformations of input and
output messages are performed using a Mediator Chain.

11.3.7 Service Mediation

The Number Porting Service instances of the three different CPOs participating in
the example scenario have the same logical interface in terms of which information
needs to be provided by a calling endpoint, but the services differ in their syntacti-
cal interface (i.e., the schema of the input messages). In VRESCo terms, the three
services provide the same (abstract) features, but implement a different concrete
operation interface. Hence, if service endpoints are to be exchanged transparently,
there is a need to map the interfaces to one another. This mapping can be easily
achieved using the VRESCo Mapping Framework (VMF), which provides capabili-
ties to map between input and output parameters of features and operations stored
in the registry.

The VMF architecture is illustrated in Figure 11.7. At design time, or mapping time,
service providers use the Mapper component to enter the mapping information into
the mapping database via the Metadata Service. The mapping information com-
prises 1) the (interfaces of the) abstract features that are available, 2) the (interfaces
of the) operations a service offers, 3) which operation implements which feature
and 4) how operation interface and feature interface are mapped to one another.

Having published the mapping functions for the operations of all three CPOs, the
endpoints for feature PortNumber can be dynamically exchanged at execution
time. Clients simply provide their input in the format that is dictated by the feature’s
interface. The VRESCo client library then transparently converts the input such that

11 VRESCo - Vienna Runtime Environment for Service-oriented Computing 317

VRESCo Client Library VRESCo Runtime
Database
| |

Mapping Time

o

£

'; Mapping Mediator

é Feature i Operation

> Input P Input Ny

w Ik i LN Web o L~
Feature m- [z] v 1Y Service < Operation .
output [| M1 [M2 [M3 stack | | Output Web Services

7 Mediator Chain L~

Fig. 11.7: VMF architecture

it matches the interface of the target operation. To that end, Mapping Mediators
are plugged in to the client library as a part of the Mediator Chain. Each mediator
that is part of this chain may perform modifications to the incoming and outgoing
messages. Converting a high-level feature input or output message to its equivalent
message on operation level is referred to as lowering, whereas the opposite is called
lifting. The Mapping Mediator retrieves the lowering and lifting information from
the Metadata Service. When outgoing messages are handed through the mediator
chain, the Mapping Mediator performs the lowering before the message is finally
serialized to SOAP and sent via the Web Service Stack.Incoming messages are firstly
deserialized and travel back through the mediator chain in the opposite direction.

The concrete interface mediation concerning the service operation SchedulePorting
is depicted in Figure 11.8. The feature PortNumber is stored in the VRESCo meta-
data model. The metadata model defines that the feature expects the input data Temp-
Number, DesiredNumber and ScheduledTime. The type of the parameters is defined
in the model as data concepts: in the case of TempNumber and DesiredNumber the
type is PhoneNumber (which contains sub-elements CountryCode, AreaCode and
Number), and the type of ScheduledTime is long. The telecommunication operators
CPOL1, CPO2 and CPO3 provide a SchedulePorting operation, each of which has
a slightly different interface (see Section 11.2.1). To create the mapping between
the feature parameters and the operations’ parameters, VMF provides a number of
Mapping Functions. Mapping Functions may be defined for both input and output
parameters. Currently, the following Mapping Functions are supported:

o Assign functions link one parameter to another parameter of the same data type.
e Parameters may be assigned constants of simple data types.

318

<<Operation>>
SchedulePorting
(CPOT1)

TempNumber =

DesiredNumber -

ScheduledTime fw.|.

W. Hummer et al.

<<Feature>>
PortNumber
TempNumber { ConvertTolnt |
.| CountryCode : .-
- Assign }
| Assign I{ Concat }:I_ AreaCode -l
Number - | Assign [

DesiredNumber

CountryCode

<<Operation>>
SchedulePorting
(CPO2)

v| TempAreaCode |

Assign } ------

>| TempNumber

CountryCode .
.) [B v| DesiredAreaCode
| Assign I{ Concat }:I: AreaCode 1 Assign
Number | Assign [----- >| DesiredNumber

ConvertToString }

"1 ScheduledTime -

ScheduledTime

Fig.

\AAJ
TempNumber DesiredNumber S«hogelragon»
chedulePorting
CountryCode CountryCode (CPO3)
AreaCode AreaCode
Number Number ScheduledTime

11.8: Interface mapping for SchedulePorting operations

Simple data types may be converted to other simple types. For example, con-

vertTolnt converts a given value to an infeger (if possible) and the convert-
ToString function creates a string representation of its input value.

elements at certain positions.
e Functions such as Concat or Substring allow for string manipulation.
o Mathematical operations are supported for numeric and boolean data types.

The set of array functions provides for creation of arrays and the access to

Additionally, more complex mappings may be defined directly in C# code. The

mapping code is stored in VRESCo as plain text and gets executed upon request
using CS-Script 3, a scripting engine for C#.

Listing 11.4 contains a code excerpt that shows how mapping functions can be added
to the VRESCo runtime. In the listing, the mapping between the service operation
SchedulePorting of CPO1 and the feature PortNumber is implemented. In line
4,a Mapper object is created that mediates between the feature and the operation.
The mapper allows direct access to the input (and output) parameters of both the
feature and the operation. In lines 6 and 7, the parameters are stored to the variables
fInput and oInput. Starting from line 9, the actual mapping functions are con-
structed. As indicated in Figure 11.8, the mapping functions are applied in a chain,
where the result of one function becomes the input of another function. In this exam-
ple, the “elementary” mappings are two Concat (string concatenation) functions

3 http://www.c

sscript.net/

11 VRESCo - Vienna Runtime Environment for Service-oriented Computing 319

and one ConvertToString function (compare lines 9-22). The results of these
functions serve as input to an Assign function for each of the three parameters of
the operation SchedulePorting of CPO1.

var metaPubl = VReSCOClientFactory . CreateMetaDataPublisher ("user”, "pass”);
var feature = ...; /! get ’PortNumber’ feature
var operation = ...; /! get ’SchedulePorting’ operation of CPOI

var mapper = metaPubl.createMapper(feature , operation);

IList <MappingElement> fInput
IList <MappingElement> olnput

= mapper . FeaturelnputParameters ;

= mapper.OperationInputParameters;
9 var concatl = new Concat();

10 concatl .AddInputElement(fInput[0].Children [0]);

11 concatl . AddInputElement(fInput[0].Children [1]);

12 concatl .AddInputElement(fInput[0].Children [2]);

13 concatl = mapper.AddFeatureToOperationFunction(concatl);

15 var concat2 = new Concat();

16 concat2.AddInputElement(fInput[1].Children [0]);

17 concat2.AddInputElement(fInput[1].Children[1]);

18 concat2.AddInputElement(fInput[1].Children[2]);

19 concat2 = mapper. AddFeatureToOperationFunction(concat2);

21 var toString = new ConvertToString (fInput[2]);
22 toString = mapper.AddFeatureToOperationFunction(toString);

24 mapper . AddFeatureToOperationFunction(new Assign(concatl.Result,olnput[0]));
25 mapper . AddFeatureToOperationFunction(new Assign(concat2.Result,olnput[1]));
26 mapper . AddFeatureToOperationFunction(new Assign(toString.Result ,olnput[2]));

28 metaPubl.AddMapping(mapper.GetMapping ());

Listing 11.4: Creating the Mapping for Operation SchedulePorting of CPO1

Finally, the metadata publisher is used to store the constructed mapping instructions
in the VRESCo runtime. Registering the mapping for operation SchedulePorting of
the remaining operators CPO2 and CPO3 works analogously. CPO2 requires only
one parameter to be converted to integer using the function ConvertToInt, the
remaining input message parts can be simply copied using the Assign function.
The mapping for CPO3 is straight-forward since its operation SchedulePorting and
the PortNumber feature are identical in their interface.

11.4 Related Work

In this section we point to existing work that is related to VRESCo. We focus our
discussion on the areas of service registries and service metadata, as well as service
mediation and dynamic invocation.

In the area of Web service registries, a number of approaches and standards exist.
UDDI [19], which was originally proposed as a core Web service standard, mod-
els characteristics of services (in the form of businessService, binding-
Template and tModel) as well as identities of service providers (business-
Entity contains metadata about a publisher and publisherAssertion de-

320 W. Hummer et al.

scribes relations between parties). The technical model (tModel) of UDDI sup-
ports mainly unstructured data, whereas the VRESCo data model is well-defined
and distinguishes between the metadata model and the service model. UDDI had
very limited success and was never fully adopted by the industry, a claim which is
supported by the fact that public UDDI registries of Microsoft, SAP and IBM were
eventually shut down in 2005. The set of specifications collectively described as
ebXML (Electronic Business using XML) 4 enables enterprises to conduct electronic
business over the Internet. Amongst other concepts, ebXML defines a Registry In-
formation Model [17] and a Registry Services [18] standard. Similar to UDDI, the
ebXML data model is rather unstructured, reducing the service description to a col-
lection of links to its technical specification, such as the WSDL document. Further-
more, no distinction is made between abstract service features and concrete service
implementations or instances. IBM’s WebSphere Service Registry and Repository
(WSRR) [7] uses a more structured information model, with the ability to automat-
ically generate model entities (called logical derivations) from physical documents
of well-known formats such as WSDL, XSD or WS-Policy. As opposed to VRESCo,
WSRR has limited support for metadata versioning in the sense that logical deriva-
tions are not manipulable and hence not versionable.

Table 11.5: Comparison of related registry approaches

Category UDDI [ebXML |WebSphere [VRESCo
Service Metadata: Unstructured v v v ~
Structured ~ ~ v v
Service Querying: Query Language / API v v v v
Type-Safe Queries X X ~ v
Service Versioning: Service Model Versioning| X v v v
Metadata Versioning X v ~ X
End-to-End Support ~ ~ X v
Quality of Service: Explicit QoS Support X X ~ v
QoS Monitoring X X X v
Dynamic Service Invocation: Binding & Invocation X X ~ v
Mediation X X v v

The results of the comparison between VRESCo and related approaches are sum-
marized in Table 11.5. Of all discussed approaches, VRESCo is the only frame-
work that provides end-to-end versioning support, which allows to seamlessly re-
bind and invoke different service revisions are runtime. All mentioned registries
allow for querying using a specialized Query language or an API that operates on
the datamodel entities, respectively. However, type-safe queries are not supported by
most approaches since usually querying is performed on the underlying unstructured
model using SQL or the like. Explicit support for non-functional, QoS-related ser-
vice metadata is not available with UDDI or ebXML. WebSphere offers basic QoS
support by means of integration of WS-Policy documents as well as user-defined

4 http://www.ebxml.org/

11 VRESCo - Vienna Runtime Environment for Service-oriented Computing 321

classifications metadata. However, this approach is limited to static attributes such
as security, price or reliable messaging, and leaves out important performance-
related characteristics such as the availability of a service or the response time of
an operation. In addition to UDDI and ebXML, a number of other standards and
approaches in the area of service metadata [2] exist. For instance, OWL-S [26] is an
ontology for describing semantic Web services [12] with the aim of automatic Web
service discovery, invocation and composition. SAWSDL [27] attempts to include
semantic annotations directly into WSDL documents, which describe the service
interface. SAWSDL enriches WSDL by semantic models on XML schema level
as well as interface and operation level. SAWSDL also uses lifting and lowering
of messages using XSLT transformation. However, it must be emphasized that the
VRESCo metadata model addresses enterprise scenarios where metadata is consid-
ered a valuable business asset and does therefore not compete with semantic Web
approaches, which aim at disclosing all metadata. Furthermore, VRESCo logically
and physically separates the service description (e.g., in the form of WSDL) from
the metadata description. Related to metadata description is the problem of runtime
querying for services that match certain requirements. The authors of [30] present a
Web service query algebra based on a formal model of service and operation graphs.
The model also includes QoS parameters and allows for defining constraints in the
form of inter-service and intra-service dependencies. The query language uses al-
gebraic operators on service functionalities (functional map operator), QoS (quality
select operator) and compositions (compose operator). Upon execution of a query,
optimization techniques are applied to select the best service execution plan. This
work is different to VRESCo since it focuses on the formal service model and the
query algebra as well as its optimizations, whereas VRESCo constitutes a runtime
for service management and querying. The API of VQL queries is based on the
Query Object pattern [6] rather than on formal predicates and clauses. Furthermore,
optimizations are left to the underlying database management system.

Obviously, pure registries such as UDDI and ebXML do not support dynamic bind-
ing, mediation and invocation. WebSphere supports service mediation using media-
tion streams, a sequence of processing steps that are executed when an input mes-
sage arrives. Inside mediation streams, a set of mediation primitives can be used
to change the format and content of messages. In contrast to VRESCo, mediation
streams are general purpose interceptors that are also used to log messages, per-
form database lookups and so forth, whereas mediation in VRESCo is tailored to
define a mapping between abstract features and concrete operations. Of the previ-
ously discussed frameworks, integration of dynamic binding and invocation is only
implemented by VRESCo. WebSphere does provide the prerequisites for dynamic
endpoint selection and for dynamically exchanging the message transport protocol
(e.g., HTTP, IMS), but the degree of abstraction does not reach the same level as
with the Daios messaging approach, where even the messaging protocol itself (e.g.,
SOAP, REST) can be transparently switched. Dynamic binding has also been ad-
dressed by other approaches. For example, Di Penta et al. [4] present WS-Binder,
a framework that enable dynamic binding of services within WS-BPEL [23] pro-
cesses. In their approach, proxies are used to separate abstract services and con-

322 W. Hummer et al.

crete instances. Similarly, the autors of [21] present a solution to model bindings in
the JOpera system using reflection. In contrast to VRESCo, both frameworks focus
mainly on service composition environments.

In the area of service mediation, most approaches to resolving interface incompat-
ibilities use an adapter-based solution [3, 10]. Whereas these adapters are principi-
ally similar to the mediators in VRESCo, they are more decoupled from the clients.
The mediators approach allows to easily integrate existing domain knowledge, also
in the form of more complex mediation concepts (such as mediation based on se-
mantic service metadata), which is not always simple to achieve using adapters.
Besides syntactic mediation of service messages [25], other related work focuses
on mediation on business protocol level. The authors of [1] identify and character-
ize different interoperability patterns of business-level interfaces and protocols, and
propose possible solutions. In [5], a set of operators is defined to tackle the problem
of behavioral service interface adaptation. The behavioral interface is seen as “a
collection of control dependencies defined over a set of message exchanges”. The
paper also provides a graphical notation for the interface transformation algebra that
is put forward. In contrast to the mentioned approaches, the VRESCo runtime medi-
ates structural differences of service interfaces, but does not consider mediation on
message exchange level.

11.5 Conclusion

One of the key promises of SOC is that it provides for loosely coupled distributed
applications based on the publish-bind-find-execute cycle. However, SOC practice
often falls short of keeping this promise due to the lack of service metadata, service
querying possibilities, explicit QoS support, and solutions for dynamic binding and
interface mediation. In this paper we have described VRESCo, the Vienna Runtime
Environment for Service-oriented Computing, which provides a solution for some is-
sues and shortcomings that are prevalent in current SOA research and practice. The
challenges addressed by VRESCo have been identified and illustrated based on a
number porting example scenario. First and foremost, in an attempt to “recover the
broken SOA triangle” [16], VRESCo constitutes a service registry that is used by
providers to store information about services in a (meta-)data model. The distinction
between abstract features (metadata model) and concrete service implementations
(service model) allows to group service instances that provide an identical function-
ality. VRESCo enables clients to query the stored information using the specialized
query language VQL in order to dynamically select an endpoint for their invoca-
tions. The selection may be based on functional criteria which concern the inter-
face (or service contract), but also on non-functional criteria in the form of QoS
attributes. The Daios framework employs an abstracted message format and is used
in VRESCo to realize dynamic and protocol-indendent invocations. The VRESCo
data model supports explicit versioning of service revisions, operations and param-
eters. User-defined and default tags describe the features of a service revision and
its position in the version graph. With the aid of mapping functions, the VRESCo

11 VRESCo - Vienna Runtime Environment for Service-oriented Computing 323

runtime mediates between service instances which perform the same task but differ
in their technical interface. The VRESCo framework covers several distinct aspects
of SOC practice and research. The result of our related work review is that simi-
lar solutions in each partial research direction exist, but that VRESCo constitutes a
unique combination of service computing concepts and techniques.

Acknowledgements The research leading to these results has received funding from the European
Community’s Seventh Framework Programme [FP7/2007-2013] under grant agreement 215483 (S-
Cube).

References

1. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing Adapters for
Web Services Integration. Advanced Information Systems Engineering 3520/2005, 415-429
(2005)

2. Bodoff, D., Ben-Menachem, M., Hung, P.C.K.: Web Metadata Standards: Observations and
Prescriptions. IEEE Softw. 22(1), 78-85 (2005). DOI http://dx.doi.org/10.1109/MS.2005.25

3. Cavallaro, L., Di Nitto, E.: An approach to adapt service requests to actual service interfaces.
In: SEAMS °08: Proceedings of the 2008 international workshop on Software engineering
for adaptive and self-managing systems, pp. 129-136. ACM, New York, NY, USA (2008).
DOI http://doi.acm.org/10.1145/1370018.1370041

4. Di Penta, Massimiliano and Esposito, Raffaele and Villani, Maria Luisa and Codato, Roberto
and Colombo, Massimiliano and Di Nitto, Elisabetta: WS Binder: a framework to enable dy-
namic binding of composite web services. In: SOSE *06: Proceedings of the 2006 international
workshop on Service-oriented software engineering, pp. 74-80. ACM, New York, NY, USA
(2006). DOI http://doi.acm.org/10.1145/1138486.1138502

5. Dumas, M., Spork, M., Wang, K.: Adapt or Perish: Algebra and Visual Notation for Service
Interface Adaptation. Business Process Management 4102/2006, 65-80 (2006)

6. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (2002)

7. International Business Machines Corporation (IBM): WebSphere Service Registry and Repos-
itory. http://www.ibm.com/software/integration/wsrr/ (2002)

8. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: End-to-End Versioning Support for Web
Services. In: SCC ’08: Proceedings of the 2008 IEEE International Conference on Services
Computing, pp. 59-66. IEEE Computer Society, Washington, DC, USA (2008). DOI http:
//dx.doi.org/10.1109/SCC.2008.21

9. Leitner, P., Rosenberg, F., Dustdar, S.: DAIOS - Efficient Dynamic Web Service Invocation.
IEEE Internet Computing 13(3), 72-80 (2009)

10. Lin, B., Gu, N, Li, Q.: A requester-based mediation framework for dynamic invocation of
web services. In: SCC ’06: Proceedings of the IEEE International Conference on Services
Computing, pp. 445-454. IEEE Computer Society, Washington, DC, USA (2006). DOI http:
//dx.doi.org/10.1109/SCC.2006.13

11. Lowy, J.: Programming WCF Services. O’Reilly (2007)

12. Mcllraith, S.A., Son, T.C., Zeng, H.: Semantic Web Services. IEEE Intelligent Systems 16(2),
46-53 (2001). DOI http://dx.doi.org/10.1109/5254.920599

13. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Advanced event processing and notifica-
tions in service runtime environments. In: DEBS °08: Proceedings of the second international
conference on Distributed event-based systems, pp. 115-125. ACM, New York, NY, USA
(2008). DOI http://doi.acm.org/10.1145/1385989.1386004

14. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Comprehensive qos monitoring of web
services and event-based sla violation detection. In: MWSOC ’09: Proceedings of the 4th

324

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

W. Hummer et al.

International Workshop on Middleware for Service Oriented Computing, pp. 1-6. ACM, New
York, NY, USA (2009). DOI http://doi.acm.org/10.1145/1657755.1657756

Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: End-to-End Support for QoS-Aware
Service Selection, Binding and Mediation in VRESCo. IEEE Transactions on Services Com-
puting (TSC) (2010). (forthcoming)

Michlmayr, A., Rosenberg, F., Platzer, C., Treiber, M., Dustdar, S.: Towards recovering the
broken SOA triangle: a software engineering perspective. In: IW-SOSWE ’07: 2nd interna-
tional workshop on Service oriented software engineering, pp. 22-28. ACM, New York, NY,
USA (2007). DOI http://doi.acm.org/10.1145/1294928.1294934

Organization for the Advancement of Structured Information Standards: OASIS/ebXML
Registry Information Model v2.0. http://www.oasis-open.org/committees/
regrep/documents/2.0/specs/ebrim.pdf (2002)

Organization for the Advancement of Structured Information Standards: ebXML Registry Ser-
vices. http://www.oasis-open.org/committees/regrep/documents/2.5/
specs/ebrs-2.5.pdf (2003)

Organization for the Advancement of Structured Information Standards: UDDI Ver-
sion 3.0.2. http://www.oasis-open.org/committees/uddi-spec/doc/
spec/v3/uddi_ v3.htm (2004). URL \url{http://www.oasis-open.org/
committees/uddi-spec/doc/spec/v3/uddi_v3.htm}. Visited: 2010-01-20
Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing: State
of the Art and Research Challenges. Computer 40(11), 38-45 (2007). DOI http://dx.doi.org/
10.1109/MC.2007.400

Pautasso, C., Alonso, G.: Flexible Binding for Reusable Composition of Web Services. In:
Proceedings of the 4th International Workshop on Software Composition (SC’2005). ACM
(2006)

Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., Dustdar, S.: An End-to-End Approach
for QoS-Aware Service Composition. In: EDOC ’09: Proceedings of the 2009 IEEE Interna-
tional Enterprise Distributed Object Computing Conference (edoc 2009), pp. 151-160. IEEE
Computer Society, Washington, DC, USA (2009). DOI http://dx.doi.org/10.1109/EDOC.2009.
14

for the Advancement of Structured Information Standards, O.: Web Services Business Pro-
cess Execution Language Version 2.0. http://docs.oasis-open.org/wsbpel/2.
0/0S/wsbpel-v2.0-0S.html (2007)

(Sun Microsystems, Inc), M.H.: Web Application Description Language. http://www.
w3.org/Submission/wadl/ (2009). URL http://www.w3.org/Submission/
wadl/. Visited: 2010-02-15

Szomszor, M., Payne, T.R., Moreau, L.: Automated syntactic medation forweb service in-
tegration. In: ICWS ’06: Proceedings of the IEEE International Conference on Web Ser-
vices, pp. 127-136. IEEE Computer Society, Washington, DC, USA (2006). DOI http:
//dx.doi.org/10.1109/ICWS.2006.34

(W3C), WW.W.C.: OWL-S: Semantic Markup for Web Services. http://www.w3.org/
Submission/OWL-S/ (2004)

(W3C), W.W.W.C.: Semantic Annotations for WSDL and XML Schema. http://www.w3.
org/TR/sawsdl/ (2007)

(W3C), W.W.W.C.: SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). http:
//vwww.w3.0rg/TR/soapl2/ (2007). URL http://www.w3.org/TR/soapl2/.
Visited: 2010-02-15

Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web Services Platform
Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messag-
ing and More. Prentice Hall PTR, Upper Saddle River, NJ, USA (2005)

Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimization. ACM
Trans. Web 2(1), 1-35 (2008). DOI http://doi.acm.org/10.1145/1326561.1326567

