
Towards Composition as a Service – A Quality of
Service Driven Approach

Florian Rosenberg, Philipp Leitner, Anton Michlmayr, Predrag Celikovic, Schahram Dustdar

Distributed Systems Group, Technical University Vienna
Argentinierstrasse 8/184-1, 1040 Vienna, Austria

{florian, leitner, anton, celikovic, dustdar}@infosys.tuwien.ac.at

Abstract— Software as a Service (SaaS) and the possibility to
compose Web services provisioned over the Internet are impor-
tant assets for a service-oriented architecture (SOA). However, the
complexity and time for developing and provisioning a composite
service is very high and it is generally an error-prone task. In this
paper we address these issues by describing a semi-automated
“Composition as a Service” (CAAS) approach combined with a
domain-specific language called VCL (Vienna Composition Lan-
guage). The proposed approach facilitates rapid development and
provisioning of composite services by specifying what to compose
in a constraint-hierarchy based way using VCL. Invoking the
composition service triggers the composition process and upon
success the newly composed service is immediately deployed
and available. This solution requires no client-side composition
infrastructure because it is transparently encapsulated in the
CAAS infrastructure.

I. INTRODUCTION

Over the last years, the Software as a Service (SaaS)
concept has gained momentum as a means to offer software as
well-defined services over the Internet. Implementing SaaS is
typically achieved by leveraging service-oriented architecture
(SOA) design principles such as loose coupling and self-
describing service interfaces. Web services as one technology
for implementing SOAs can help to achieve this vision by
providing standards such as WSDL [1] as service description
language and SOAP [2] as transport protocol.

One of the main benefits of implementing a well-shaped
SOA is the ability to compose new functionality out of
existing services into so-called “composite services”, thus
significantly increasing reuseability of existing services. This
process itself is called composition [3] or orchestration and
needs a composition engine to enact a composed service (or
application)1.

Typically, two major issues have to be addressed before
adopting service compositions: Firstly, which composition
approach should be used allowing an adequate description of
functional and non-functional aspects of a composed service?
These include functional aspects such as the services to be
used, non-functional aspects such as Quality of Service (QoS)
concerns as well as the specification of the control and/or data
flow (depending on the composition language). Secondly, how
are these composed services deployed and provisioned to allow
other software artifacts to invoke them?

1We use the terms composite service, composite application and composi-
tion interchangeably in this paper.

Currently, several approaches to engineer composite appli-
cations exist. The vast majority of developers use a purely
static approach to build a composition by manually selecting
available services and specifying the control flow to define
the composition logic. Static compositions can be built for
example by using WS-BPEL [4] or the Microsoft Windows
Workflow Foundation [5]. The static nature of a composition
poses a real problem, for example, when services need to
be dynamically selected or exchanged from a pool of sim-
ilar services based on changing Quality of Service (QoS)
attributes such as response time, throughput or availability.
So-called dynamic service adaptation mechanisms for static
approaches have been introduced to overcome this problem
and increase availability and fault-tolerance of Web service
compositions [6], [7].

In terms of service deployment and provisioning, a service
composition infrastructure is required to enable the deploy-
ment of composite services and atomic services (if not hosted
otherwise). Currently, most deployment aspects include a
number of (often ’hand-crafted’) tasks leading to a successful
deployment. This process is usually very cumbersome and
error-prone. Especially for small and medium sized enterprises
(or even individuals) the required infrastructure to host com-
posite services is often not available or simply too expensive
in terms of acquisition cost and maintenance.

In this paper we address these two aforementioned issues by
adding the CAAS approach to our VRESCO SOA runtime [8],
[9], [10], [11], [12] and enable the specification of composite
applications with VCL. VRESCO itself provides a uniform
programming model and SOA runtime that addresses issues
such as service publishing, querying, versioning and service
mediation based on a uniform service metadata model. A
detailed description of all the VRESCO aspects is out of scope
of this paper, we refer the interested reader to our previous
work.

The contributions of this paper can be summarized as
follows: Firstly, we put forward a textual domain-specific
language (DSL) named VCL (Vienna Composition Language)
that was developed solely for the purpose of specifying service
compositions. The novelty of VCL is the ability to specify
constraints describing functional and non-functional aspects
of a composition using a constraint hierarchy-based approach.
Quality of service (QoS) is a first-class entity of the DSL
enabling a QoS-aware composition.

Secondly, we bridge the gap between composite service
specification and provisioning by enabling “Composition as
a Service” (CaaS). To this end, we leverage VRESCO as an
infrastructure (including metadata for the services stored in a
service registry) to enhance it with a composition environment
to receive and process composition requests (written in VCL).
During runtime, a composition request is transformed into a
constraint optimization problem to find an optimal selection
of services that match the user’s constraints. However, in this
paper we focus on the end-to-end system rather than on the
QoS-aware optimization algorithms.

This paper is organized as follows: Section II presents some
of the related work. Section III and IV describe the approach
and rationale behind CAAS and VCL. Some implementation
aspects are highlighted in Section V. Section VI discusses
some of the issues and limitations related to this work and
Section VII concludes this work and highlights some future
work.

II. RELATED WORK

Applying DSLs for composing service-oriented systems is a
relatively new idea, whereas DSLs have been successfully ap-
plied in other areas (also within the SOA domain). Oberortner
et al. [13] discuss the use of DSLs for SOAs in general, with
a special focus on model-driven development and process-
driven SOAs [14]. The authors differentiate between DSLs
for domain experts (high-level DSLs) and DSLs for technical
experts (low-level DSL). According to their classification, VCL
can neither be explicitly classified as high-level DSL nor as
low-level DSL because it abstracts from low-level semantic
and syntactic issues (such as constructs in WS-BPEL or
any other composition language) but requires some technical
understanding about the domain of “service composition” to
be practically usable.

In [15], the author describes the WebDSL approach, a
domain-specific language for dynamic Web applications. It
allows the specification of domain models, presentation logic,
page flows and access control [16]. Similar to our approach,
WebDSL abstracts from the complexity of the underlying
execution languages and runtimes (JSF, Hibernate and Seam
in their approach). Besides abstracting from the underlying
runtime, in our approach we additionally introduce an opti-
mization layer in between the language specification and the
generation of the executable composition to optimize the local
and global QoS constraints that have been specified by the
user.

JOpera [17], developed at the ETH Zürich, provides a visual
composition language that focuses on an interactive environ-
ment allowing users to visually specify, design and test their
compositions. Their approach does not focus on pure SOAP-
based services, it also handles arbitrary Java or Enterprise
JavaBeans and RESTful services. In contrast to their approach,
we go into a different direction by providing a semi-automated
approach using a textual DSL that gives developers a simple
language to rapidly developing and deploying a composition
without requiring any composition infrastructure.

In terms of QoS-aware optimization of compositions, Zeng
et al. [18] provided some of the fundamentals in the Web
service community. They use the well-known Integer Program-
ming (IP) technique to find an optimized composition in terms
of QoS that satisfies all the global and local QoS constraints.
This is based on the assumption that for each abstract service
in a composite service a pool of candidate services exists. The
main challenge is the encoding of various QoS constraints
and the aggregation of QoS values in the workflow according
to the execution path in a composite service. Their approach
can be seen complementary to our work, however, our overall
approach is not focused on one specific formalism for QoS-
aware optimization. VCL itself allows the specification of
given QoS requirements, either locally on given services as
well as globally. Our work is also capable of integrating
different optimization algorithms, such as approaches based
on stochastic models [19], [20].

In [21], the authors discuss an approach for interleaving
planning and execution of service compositions by means
of a special language called XSRL (XML Service Request
Language). It enables users to specify goals and constraints
for a (pre-compiled) composite service where the services are
dynamically bound in the composition, e.g., by using UDDI
(Universal Description Discovery and Integration). Their ap-
proach is based on AI planning and constraint satisfaction
techniques to fulfill a service request. In contrast, we focus
on providing a language and runtime to create and deploy
a composite service that has various constraints in terms of
functionality and QoS. Once a composite service is deployed
our approach is still able to re-bind to another service once the
QoS changes since the initial deployment of the composition.

III. COMPOSITION APPROACH

The Composition as a Service (CaaS) approach is based
on the idea of reducing the complexity involved when devel-
oping a composite application, e.g., such as with WS-BPEL.
Typically, the composition process can be divided into service
discovery, composite service specification, deployment, testing
and runtime monitoring (assuming that the requirements of the
composite service in terms of its functionality have already
been defined). The CaaS approach in combination with the
VRESCO SOA runtime mainly encompasses all these steps
(except testing) in a holistic approach. Service discovery is not
done by querying public registries but VRESCO provides a
mechanism to publish services in its own registry and associate
them with expressive metadata which can later be queried by
a powerful query language.

A. CaaS Overview

An overview of the CAAS approach is depicted in Figure 1.
From an end-user perspective the developer (on the client-side)
specifies the composition in VCL and uses the client library
to invoke the composition service at the VRESCO runtime.
The client library provides a convenient way to access the
VRESCO core services (such as publishing, metadata, query-
ing, etc). Additionally, the client library compiles the VCL

VRESCo Runtime Environment

Registry
Database

Metadata
Service

Publishing
Service

Notification
Service

ORM
Layer

QoS
Monitor

Composition
Service

VRESCo
Core

Client
Library

VCL
Specification

Infrastructure Level

Feature
Resolution

Constraint
Resolution & QoS

Optimization

 Generation of
Executable

Composition

Client Side

d

Deployment of the
Composite

Service

e

c

a

Querying
Service

SOAP

Structured
Composition
Generation

b

Fig. 1. Architectural Overview of Composition as a Service with VCL

specification and checks for static errors to avoid contacting
the composition service using invalid input. Once a statically
correct VCL specification is sent to the VRESCO runtime,
the five steps (a) to (e) in the grey box on the left side
have to be executed to successfully deploy and provision a
composite service. Step (a) comprises the resolution of features
(service operations are denoted as features in our model – see
below) that are required for the composition. Resolving all
features implies a translation of the feature requirements into
a query that is offered by the VRESCO querying service.
In step (b) a data flow analysis of the VCL specification
is performed to determine dependencies among the service
and to generate a fully structured composition [22]. Once all
features and data dependencies have been resolved, step (c)
is activated where all the constraints in the VCL specification
have to be satisfied and the QoS optimization problem defined
by the QoS constraints has to be resolved. A non-satisfiable
constraint leads to an error and will send a notification back to
the user to allow changes, e.g., by relaxing some constraints.
Assuming all constraints are satisfied, the actual generation
of the executable composite service happens in step (d). Step
(e) finalizes the process by deploying the generated composite
service and sending the newly deployed service endpoint back
to the user. Additionally, the new service is registered in the
VRESCO registry using the publishing service.

B. Service Model

Before going into the details of VCL, we need to introduce
the foundations of our service model as it is essential for
VCL. The user needs to be able to define what should be
composed and the composition engine needs be able to retrieve
metadata about the services to match its capabilities with the
user’s requirements. In our approach, we define a service by
its functional and non-functional characteristics [11].

1) Functional Characteristics: The functionality of a ser-
vice is described by the VRESCO metadata model, an ab-
stract, feature-driven model for defining what functionality
is offered by a service. In Figure 2, we have depicted our
basic metadata model for modeling services, their categories,
features, pre- and postconditions. In this model we have to
abstract from the technical service implementation to achieve
a common understanding what a service does and what it
expects and provides. In a typical SOA environment, there
may be multiple services that facilitate the same business goal,
therefore, we also need a way to group services according
to their functionality. In the following, we use italic font
to represent model elements and typewriter to indicate
instances of a model element.

Category

Feature

Concept

Precondition

Postcondition

Predicate

Argument

Data Concept

isSubCategory

1..*

1

1
1

11

*

0..1

1

1

*

0..1

derivedFrom

consistsOf

0..1

*

Fig. 2. VRESCo Metadata Model

The main building blocks of the VRESCO metadata model
are Concepts. A Concept is the definition of an entity in the
domain model (e.g., a generalized model element Person
and a special variant of it called Customer). We distinguish
between three different types of Concepts:

• Features represent activities in the domain that per-
form a concrete action, e.g., Calculate Loan,
Create Customer.

• Data Concepts represent concrete entities in the domain
(e.g., customers, addresses or bills) which are defined
using other Data Concepts (e.g., the concept Customer
might consist of Customer Id, Customer Name, and
Address) and/or atomic elements such as strings or
numbers.

• Predicates represent domain-specific statements that ei-
ther return true or false. Each Predicate can have a
number of Arguments that express their inputs. For exam-
ple, a (state) predicate for a Feature Create Customer
could be Customer Not Exists, expressing that a
customer must not exist before invoking that feature.

Concepts have a well-defined meaning specific to a certain
domain. Concepts may be derived from other concepts; that is
specifically interesting for Data Concepts, e.g., it is possible to
define the concept Premium Customer which is a special
variant of the more general concept Customer.

Each Feature is associated with one Cate-
gory expressing the purpose of a service (e.g.,
Customer Relationship Management). Each
category can have additional subcategories to allow a more
fine-grained differentiation. Each Feature has a Precondition
and a Postcondition expressing logical statements that have
to hold before and after the execution of a Feature. Both
types of conditions are composed of multiple Predicates,
each having a number of (optional) Arguments that refer
to a Concept in the domain model (indirectly through a
Data Concept). A Predicate can be used to express data
flow or observable state related information that may be
necessary when composing a service. For example, a Feature
called Create Customer could have a precondition
Customer Not Registered(Customer) expressing
that a customer must not be registered before invoking it.
In general, predicates can be specified by the developer
to explicitly define flow and state behavior, however, they
are not required or enforced by the service implementation
upon execution time. This kind of metadata only provides
knowledge which is required later, when performing semi-
automated or fully automated service composition, where
such pre- and postconditions are a required means to guide
the composition process for stateful services.

The VRESCO client library provides an API to define the
aforementioned metadata programmatically. When concrete
service instances are published, the mapping between a feature
and a concrete service operation can be defined. Additionally,
the input and output concepts of a feature can be mapped
to the input and output of the concrete service instances.

Having multiple services which implement the same feature
enables a dynamic binding and dynamic interface mediation
between similar services [23]. This powerful concept enables
a transparent handling of service invocations based on features
and is foundational for the approach described in this paper.

2) Non-functional Characteristics: Besides the functional
characteristics, a set of QoS attributes is associated with
every service. QoS is a useful measure to distinguish well
performing from bad performing services. In general, one
has to distinguish between deterministic and non-deterministic
QoS. The former encompasses values which are known when a
service is invoked whereas the latter are unknown at invocation
time, therefore, they have to be gathered through runtime
observation. In [24], we have described an approach for
measuring QoS attributes from a client side perspective that we
use within the VRESCO environment (see the QoS Monitor
in Figure 1).

Attribute Formula Unit

Response Time qrt(n) = 1
n

nX
i=0

qrti msec

Latency qla(n) = 1
n

nX
i=0

qlai
msec

Availability qav(t0, t1, td) = 1− td
t1−t0

percent

Accuracy qac(rf , rt) = 1− rf

rt
percent

Throughput qtp(t0, t1, r) = 1− r
t1−t0

invocation/sec

Price n/a per invocation

Reliable Messaging n/a {true, false}

Security n/a {None,X.509,. . .}

TABLE I
AVAILABLE QOS ATTRIBUTES

All QoS attributes considered in our approach are shown in
Table I. For each attribute we list a distinct name, a formula
how the attribute is calculated in case of non-deterministic
attributes or “n/a” if it is deterministic (such as price, reliable
messaging and security). The response time qrt(n) is the dura-
tion that a service request needs on the wire plus the execution
time of service at the service provider. It is calculated as
the average value of n individual measuring points qrti

. The
latency qla(n) is the time a request needs on the wire and the
average is calculated the same way as the response time. The
availability qav(t0, t1, td) is the probability a service is up and
running and producing correct results; (t0, t1 are timestamps,
td is the time the service was down). The accuracy qac(rf , rt)
is the probability of a service to produce correct results where
rf denotes the number of failed request and rt denotes the
total number of requests. The throughput qtp(t0, t1, r) is the
maximum number of requests a service can process within
a certain time period (denote as t1 − t0), and r is the total
number of requests during that time.

QoS attributes are automatically available within the

VRESCO runtime and are monitored using our approach
from [24]. The observed values are automatically associated
with the corresponding service operations in the VRESCO
registry and can be queried using the querying service (see
Figure 1).

IV. VIENNA COMPOSITION LANGUAGE

The main goal of VCL is to provide an intuitive and simple
DSL for the purpose of composition within the VRESCO
environment. It enables to capture what a composition should
do and what QoS is required from a global perspective and
also what QoS is required from individual services in the
composition (local perspective). Additionally, constraints on
individual services can be imposed, such as on inputs and
outputs of each service, preconditions or postconditions that
have to be fulfilled. A main concept in VCL is the fact that we
group QoS constraints into constraint hierarchies to address
the problem that not all QoS attributes can always be fully
satisfied and not necessarily have to be. Consider an example,
where a user specifies two global constraints on a composition
expressing that the response time should be ≤ 5000msec and
the availability should be ≥ 0.95. Unfortunately, the composi-
tion system cannot fulfill the availability constraint because its
actual value is 0.935, thus, the composition process fails due to
a violating QoS constraint. By using constraint hierarchies one
can add a strength to QoS attributes to express its importance
in a hierarchical way. Traditional constraint-based approaches
usually fail when a constraint is violated and no solution exists
that fulfills all constraints. Such systems of constraints are
called over-constrained systems. Constraint hierarchies [25]
have been proposed to solve such system by associating a
strength or preference value with each constraint expressing
its importance in the constrain resolution. In VCL we use
four different hierarchy values per default: {required,
strong, medium, weak} can be specified for each QoS
global or local QoS constraint and will be respected by the
composition algorithm.

The service model presented in Section III is an integral
part for the overall CaaS approach, as VCL has to rely on a
strong runtime support that is able to generate an executable
composite service from that abstract description specified in
VCL. The core elements of a VCL specification are visualized
in Figure 3 and described in detail in the subsequent sections.

A VCL specification of a composite service CS is a tuple
CS =< FD,FC, GC,BPS > with the following elements:
FD represents the feature definitions that specify which
features will be composed. Each feature has an associated
category and an invocation type defining whether a feature has
to be invoked synchronously (type sync) or asynchronously
(type async). The definition of features and categories fol-
lows the notation we introduced in Section III. Due to the fact
that categories can have multiple subcategories (as denoted
in Figure 2), the specification of categories allows a wildcard
character * to refer to a specific category within the category
tree without specifying the whole path in the category tree.

composition Sample1

Business Protocol Specifciation

invoke name1 { /* data assignments here */
invoke name2
join name1, name2
check (condition) {
 invoke name3
}
invoke name4
return { status = "job done" }

Constraints

Feature Definition

feature name1, *.Category1, sync
feature name2, *.Category2, sync
feature name3, *.Category3, sync
feature name4, *.Category4, async

constraint global {
 input = { }
 output = { }
 qos = { }
 precond = {}
 postcond = {}
}

Global Constraints

constraint name1 {
 input = { /* constraints defined here */ }
 output = { }
 qos = { }
 precond = { }
 postcond = { }
}

Feature Constraints

Fig. 3. VCL General Schema

FC represents a set of (optional) feature constraints that
can constrain the input, output, QoS, precondition and post-
condition of each feature. The input and output constraints
restrict the data which is required as an input or output of
a feature. Preconditions and postconditions can be used to
express assertions that need to be valid before or after the
execution of a feature, respectively. QoS constraints can be
associated with a strength to express its preference (“required”
strength is the default).

GC represents the global constraints for the overall compo-
sition. Similar to feature constraints, global constraints can be
used to restrict input, output, QoS and specify preconditions
and postcondition for the resulting composite service CS.
The semantics of input and output is used to define input
and the output data of CS. In other words they define the
input and output of the composed service interface. Again,
QoS constraints can be associated with a strength value.

BPS represents an abstract business protocol specification
that defines what service should be invoked and can also
specify simple conditional execution or loops. The business
protocol specification does not have to specify a complete
composition, as it has to be done in WS-BPEL. Many aspects,
such as determining the execution order, are done automati-

cally by the composition service that acts as the backend to
VCL. For example in Figure 3 we have several statements
illustrating various aspects of a control flow definition, e.g.,
the invocation of the given feature using invoke (possible
data assignments are not shown in the figure). They can either
be executed sequentially or in parallel, depending on the data
flow. If, for example, feature “name2” has no dependencies
on “name1” they both can be executed in parallel. VCL is
flexible in terms of the concrete BPS formalism. Currently
we use a graph-based approach to specify the BPS, however,
we are not restricted to it. It is also possible to use a
label-transition system to specify the business protocol of a
composition. Currently we support the most important control
flow constructs such as loops, conditional, splits, joins, etc.

A. VCL by Example - A RestaurantGuide Service

We depict a simple example composing a restaurant guide
service which can be used for example on mobile devices to
quickly locate and reserve a restaurant for the same day at a
specific time, for a number of persons. The VCL specification
is shown in Listing 1. We assume that all the services that are
used have been published previously in the VRESCO registry
and associated with metadata. The QoS monitor is aware
of the services and provides up-to-date quality information.
The composition uses four features (line 3-6) defined in the
VRESCO registry, and a several services are associated with
them (e.g., some restaurant services, local taxi services and
map services such as Google Maps, Yahoo, etc). Those ser-
vices are mapped to features using the VRESCO client library.
It is important to note that feature sendMapInfo (line 6)
is invoked asynchronously and sends the map information
directly per email to the invoker of the composite service.

After the feature definition, a number of constraints on the
individual features can be defined. In our case, we just define
one QoS constraint for the feature sendMapInfo to restrict
its response time to ≤ 5000msec to ensure that we receive
the map information about the location (per email) within less
then five seconds (line 8–12).

The global constraints for the whole composition are de-
scribed from line 15 to 33. They define the external service
interface of the composed service using the input and output
constraint. The QoS constraint defines some general QoS
properties that have to be fulfilled – depending on their
hierarchy level – before the composition can be generated and
deployed. In this example we only define the response time
as “required” constraint. All the other ones are “nice to have”
with a preference on price over security.

From line 35 to 62, the business protocol is specified. In our
current version of VCL we use a procedural way to specify
the composition by having a number of control flow and
synchronization constructs. Data flow is also supported by
allowing to assign and read data from a feature. For example
a complex data structure can be accessed and initialized with
new values as shown from line 36 to 39. The return state-
ment terminates the composite service execution by returning
the required data as specified in the global output constraint.

� �
1 compos i t ion RestaurantGuide
2
3 f e a t u r e findRestaurant , ∗ .Restaurant , type sync
4 f e a t u r e reserveRestaurant , ∗ .Restaurant , type sync
5 f e a t u r e orderTaxi , ∗ .Transportation , type sync
6 f e a t u r e sendMapInfo , ∗ .LocationServices , type async
7
8 c o n s t r a i n t sendMapInfo {
9 qos = {

10 responseTime <= 5000 , required ;
11 }
12 }
13 # o t h e r f e a t u r e s c o n s t r a i n t s c u t f o r r e a d a b i l i t y
14
15 c o n s t r a i n t global {
16 input = { # i n p u t s o f t h e c o m p o s i t e s e r v i c e i n t e r f a c e
17 s t r i n g restaurantType ;
18 s t r i n g restaurantQuality ;
19 s t r i n g name ;
20 s t r i n g phoneNr ;
21 s t r i n g emailAddress ;
22 s t r i n g nrOfPersons ;
23 s t r i n g time ;
24 }
25 output = { # o u t p u t o f t h e c o m p o s i t e s e r v i c e i n t e r f a c e
26 boolean reservationStatus ;
27 }
28 qos = {
29 responseTime <= 5000 , required ;
30 price < 5 , s t ro ng ;
31 security = X . 5 0 9 , weak ;
32 }
33 }
34
35 invoke findRestaurant {
36 RestaurantRequest [
37 food = restaurantType ;
38 stars = restaurantQuality ;
39]
40 }
41 # some r e s t a u r a n t s found ?
42 check (findRestaurant .RestaurantResponse .hits > 0) {
43 invoke reserveRestaurant {
44 ReservationRequest [
45 name = name ;
46 phone = phoneNr ;
47 email = emailAddress ;
48 time = time ;
49 count = nrOfPersons ;
50]
51 }
52 invoke orderTaxi { / / cut for readability
53 }
54 invoke sendMapInfo { / / cut for readability
55 }
56 }
57 re turn {
58 reservationStatus =
59 findRestaurant .RestaurantResponse .hits > 0 &
60 reserveRestaurant .status &
61 orderTaxi .reservationStatus ;
62 }� �

Listing 1. RestaurantGuide Composition

B. Composite Service Generation

Up to now, we have mainly focused on VCL to specify a
QoS-aware composite service. Due to space restriction we can
only briefly go over all the required steps, without going into
too much detail. When sending the VCL composition request
to the composition service (see Figure 1), we can already
assume that the VCL input is valid has no static errors because
it has been validated using the client library. It includes a
compiler for the DSL that transforms the VCL input into a
C#-based object model. This object model is the main input
for all the other processing step that follow.

a) Feature Resolution: Feature resolution is the process
of querying all services candidates that implement a given
feature and its constraints as specified in VCL. We assume
that each feature of a business application is defined in
the VRESCO metadata model as part of the requirements
engineering process. Each feature is traversed by the feature
resolution algorithm and translated into a VQL (Vienna Query
Language) query, VRESCO’s query language. For example,
the feature findRestaurant from Listing 2 will result in
the following VQL query:� �

1 var fquery = new VQuery (typeof (ServiceRevision)) ;
2 fquery .Add (Expression .Eq ("Operations.Feature.Name" ,
3 "findRestaurant")) ;
4 IList<ServiceRevision> features =
5 querier .FindByQuery (fquery , QueryMode .Exact)
6 as IList<Feature>;� �

Listing 2. Feature to Query Translation Composition

In addition to querying for the feature name, we also
add all required QoS constraints, input, output, pre- and
postconditions as criteria to the query to ensure that a feature
fulfills all its constraints. This is achieved by adding a criterion
for each constraint to the query in Listing 2 (similar to the
criterion in line 2–3). After the feature resolution process, we
have resolved all features and have a set of services for each
feature that fulfill all required feature constraints (a list of
ServiceRevision instances internally in VRESCO).

b) Structure Composition Generation: In this step – it
happens in parallel to the feature resolution as there are no
dependencies – the composition service analyzes the business
protocol specification of the VCL specification. The business
protocol does not necessarily be complete in the sense that
the user has to specify the service execution order exactly.
However, in our example in Listing 1 we specify it completely
to illustrate most of VCL’s features. The main goal of this step
is to analyze data dependencies among the service invocations
to generate a structured service composition (i.e., determine
the correct execution order). We have adopted and extended
the approach described by Eshuis et al. [22] to generate a
structured composition and also to calculate the overall QoS
of a composition.

c) Constraint Resolution and QoS Optimization: In this
step, we formulate a constraint satisfaction problem (CSP)
which has all the service candidates (grouped per feature) from
the previous feature resolution as an input. All the local (only
optional ones) and global constraint (required and optional
ones) from the VCL specification will be added as constraints.
We use the structured composition graph from the previous
step to aggregate all the global QoS constraints based on
the control flow of the composition and their aggregation
formulas. The CSP can have multiple solutions, thus, we
associate a weight with different constraint hierarchies levels
to find the optimal solution.

d) Generation of Executable Composition: In this step
we transform the structured workflow and the information
which concrete service to invoke (from the constraint reso-
lution process) into a Windows Workflow Foundation (WWF)

representation. This is achieved by traversing the structured
composition model and generating the respective workflow ac-
tivities in XAML (Extensible Application Markup Language).

e) Deployment of Composite Service: The deployment
step is the simplest step and just involves parsing the previ-
ously generated workflow and hosting it using the WWF pro-
vided WorkflowServiceHost class. Finally, the endpoint
of the composite service that is implemented by the generated
workflow is returned to the caller, and the composite service
is ready to accept client requests.

V. IMPLEMENTATION

VCL is implemented as a DSL by using the Microsoft
Oslo Toolkit2. Oslo assists in defining the DSL grammar and
provides a compiler to translate the DSL into a custom object
model. This object model contains all our information encoded
in that DSL. The composition service that does all the DSL
processing described earlier in the paper, is implemented as a
core service within the VRESCO platform. VRESCO itself is
also implemented using the Microsoft .NET framework (C# in
particular) and uses the Windows Communication Foundation
(WCF) as a technology for implementing Web services. The
CSP is solved using NSolver3. All VRESCO core services,
including the composition service can be accessed using
a pre-built client library – available for Java and .NET –
implementing an object-oriented connector for VRESCO to
enable a better productivity while using VRESCO.

VI. DISCUSSION

VCL is not a generic language that is able to solve all
QoS-aware service composition issues. The syntax of the
language is flexible in the sense that new language constructs
or QoS attributes can be added quickly. Nevertheless, the
semantics behind the language is targeted specifically to the
VRESCO environment and its metadata model [11]. The
ability to manage services in VRESCO and associate them
with metadata (e.g., features that map to service operations),
and to dynamically query and invoke services are core features
leveraged by the composition service.

Another important aspect to consider is the granularity of
the composite service that can be implemented with VCL. By
design, VCL was developed with a special focus on QoS-
aware service compositions and is not targeted to solve large-
scale multi-party workflows with several interactions (possibly
involving human actors). For such tasks, it is favorable to use a
well-know workflow engine. Besides, the right granularity, we
claim that the composition service can generate an executable
composite service according to VCL specification. This is true,
however, there are still cases where an executable workflow
cannot be generated, for example, due to an insufficient
specification, or the lack of expressiveness in VCL (e.g.,
missing functionality). In such cases, VCL still has some value
by generating a composite service template that can then be
refined and deployed manually.

2http://msdn.microsoft.com/oslo
3http://www.cs.cityu.edu.hk/˜hwchun/nsolver/

Based on the current VCL implementation, it is important
to note that the way how the business protocol for a composite
service is defined is not fixed. We currently use a graph-based
model, similar to existing languages such as WS-BPEL, to
define the invocation order and the control flow. However, the
DSL implementation is very flexible in terms of adding new
language constructs to support other formalisms to specify the
composition logic. While the business protocol specification
might change over time, the rest of the language is stable

VII. CONCLUSIONS

In this paper we have illustrated the concept of “Compo-
sition as a Service” which aims at reducing the need for a
composition infrastructure and allows to compose and deploy
services on the fly. We contribute a DSL called VCL as the
core language for using the CaaS approach. VCL is a QoS-
driven composite service specification language following a
constraint-hierarchy based approach to specify what services
are needed and what QoS are required and desired.

We are currently setting up a testbed with thousands of
services that all simulate different QoS values. This will allow
us to thoroughly evaluate and tune our constraint resolution
algorithms to demonstrate an efficient end-to-end composition.
In addition, we plan to incorporate dynamic reconfiguration
of a composite service if local and global QoS constraints
specified at design time no longer hold during runtime (based
on changing QoS of service that implement a specific feature).

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreement 215483 (S-
Cube).

REFERENCES

[1] Web Services Description Language (WSDL) 1.1, World Wide Web
Consortium (W3C), 2001. [Online]. Available: http://www.w3.org/TR/
wsdl

[2] SOAP Version 1.2, World Wide Web Consortium (W3C), 2003.
[Online]. Available: http://www.w3.org/TR/soap

[3] S. Dustdar and W. Schreiner, “A Survey on Web services Composition,”
International Journal of Web and Grid Services, vol. 1, no. 1, pp. 1–30,
2005.

[4] Web Service Business Process Execution Language 2.0, OASIS,
2006. [Online]. Available: http://www.oasis-open.org/committees/tc
home.php?wg abbrev=wsbpel

[5] D. Shukla and B. Schmidt, Essential Windows Workflow Foundation,
1st ed. Addison-Wesley Professional, 2006.

[6] O. Moser, F. Rosenberg, and S. Dustdar, “Non-Intrusive Monitoring
and Adaption for WS-BPEL,” in Proceedings of the 17th International
International World Wide Web Conference (WWW’08), Beijing, China,
Apr. 2008.

[7] O. Ezenwoye and S. M. Sadjadi, “RobustBPEL2: Transparent Autono-
mization in Business Processes through Dynamic Proxies,” in Proceed-
ings of the 8th International Symposium on Autonomous Decentralized
Systems (ISADS’07), Sedona, Arizona, 2007.

[8] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustdar,
“Towards Recovering the Broken SOA Triangle – A Software
Engineering Perspective,” in Proceedings of the 2nd International
Workshop on Service Oriented Software Engineering (IW-SOSWE’07),
Dubrovnik, Croatia, 2007, pp. 22–28. [Online]. Available: http:
//doi.acm.org/10.1145/1294928.1294934

[9] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Advanced
Event Processing and Notifications in Service Runtime Environments,”
in Proceedings of the 2nd International Conference on Distributed
Event-Based Systems (DEBS’08), Rome, Italy. ACM, 2008, pp. 115–
125. [Online]. Available: http://doi.acm.org/10.1145/1385989.1386004

[10] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “End-to-
End Versioning Support for Web Services,” in Proceedings of the
International Conference on Services Computing (SCC’08), Honolulu,
Hawaii, USA. IEEE Computer Society, July 2008, pp. 59–66. [Online].
Available: http://dx.doi.org/10.1109/SCC.2008.21

[11] F. Rosenberg, P. Leitner, A. Michlmayr, and S. Dustdar, “Integrated
Metadata Support for Web Service Runtimes,” in Proceedings of the
Middleware for Web Services Workshop (MWS’08), co-located with
the 12th IEEE International Distributed Object Computing Conference
(EDOC’08), Munich, Germany. IEEE Computer Society, Sept. 2008.

[12] P. Leitner, F. Rosenberg, and S. Dustdar, “DAIOS – Efficient Dynamic
Web Service Invocation,” IEEE Internet Computing, 2009, forthcoming.

[13] E. Oberortner, U. Zdun, and S. Dustdar, “Domain-Specic Languages for
Service-Oriented Architectures: An Explorative Study,” in Proceedings
of ServiceWave 2008, Madrid, Spain, P. Mähönen, K. Pohl, , and T. Priol,
Eds. Springer, 2008, pp. 159–170.

[14] U. Zdun, C. Hentrich, and S. Dustdar, “Modeling Process-Driven and
Service-Oriented Architectures Using Patterns and Pattern Primitives,”
ACM Transactions on the Web (TWEB), vol. 1, no. 3, pp. 14:1–14:44,
2007.

[15] E. Visser, “WebDSL: A Case Study in Domain-Specific Language
Engineering,” TU Deflt, The Netherlands, Tech. Rep. TUD-SERG-
2008-023, 2008. [Online]. Available: http://swerl.tudelft.nl/twiki/pub/
Main/TechnicalReports/TUD-SERG-2008-023.pdf

[16] D. Groenewegen and E. Visser, “Declarative Access Control for
WebDSL: Combining Language Integration and Separation of Con-
cerns,” in Proceedings of the International Conference on Web Engineer-
ing (ICWE’08) Yorktown Heights, New York. IEEE Computer Society,
July 2008, pp. 175–188.

[17] C. Pautasso and G. Alonso, “The JOpera Visual Composition
Language,” Journal of Visual Languages and Computing (JVLC),
vol. 16, pp. 119–152, 2005. [Online]. Available: http://www.jopera.org

[18] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “QoS-Aware Middleware for Web Services Composition,”
IEEE Transactions on Software Engineering, vol. 30, no. 5, pp. 311–
327, May 2004.

[19] G.Canfora, M. D. Penta, R. Esposito, and M. L. Villani, “An Approach
for QoS-aware Service Composition based on Genetic Algorithms,” in
Proceedings of the Genetic and Computation Conference (GECCO’05),
Washington DC, USA. ACM Press, 2005.

[20] W. Wiesemann, R. Hochreiter, and D. Kuhn, “A Stochastic Programming
Approach for QoS-Aware Service Composition,” in Proceedings of the
8th IEEE International Symposium on Cluster Computing and the Grid
(CCGrid’08), Lyon, France, May 2008.

[21] A. Lazovik, M. Aiello, and M. Papazoglou, “Planning and monitoring
the execution of web service requests,” Journal on Digital Libraries,
vol. 6, no. 3, pp. 235–246, June 2006.

[22] R. Eshuis, P. W. P. J. Grefen, and S. Till, “Structured service compo-
sition,” in Proceedings of the 4th International Conference on Business
Process Management, Vienna, Austria, 2006, pp. 97–112.

[23] P. Leitner, A. Michlmayr, and S. Dustdar, “Towards Flexible
Interface Mediation for Dynamic Service Invocations,” in Proceedings
of the 3rd Workshop on Emerging Web Services Technology
(WEWST’08), co-located with the 6th IEEE European Conference
on Web Services (ECOWS’08), Dublin, Ireland, Nov. 2008, pp. 45–
59. [Online]. Available: http://www.inf.unisi.ch/faculty/binder/wewst08/
wewst08 proceedings.pdf

[24] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping Performance
and Dependability Attributes of Web Services,” in Proceedings of the
IEEE International Conference on Web Services (ICWS’06), Chicago,
USA, Sept. 2006.

[25] A. Borning, B. Freeman-Benson, , and M. Wilson, “Constraint Hier-
archies,” Lisp and Symbolic Computation, vol. 5, no. 3, pp. 223–270,
Sept. 1992.

