
An End-to-End Approach for QoS-Aware Service
Composition

Florian Rosenberg, Predrag Celikovic, Anton Michlmayr, Philipp Leitner and Schahram Dustdar
Distributed Systems Group, Technical University Vienna

Argentierstrasse 8/184-1, Vienna, Austria
lastname@infosys.tuwien.ac.at

Abstract—A simple and effective composition of software ser-
vices into higher-level composite services is still a very challenging
task. Especially in enterprise environments, Quality of Service
(QoS) concerns play a major role when building software systems
following the Service-Oriented Architecture (SOA) paradigm. In
this paper we present a composition approach based on a domain-
specific language (DSL) for specifying functional requirements of
services and the expected QoS in form of constraint hierarchies
by leveraging hard and soft constraints. A composition runtime
will resolve the user’s constraints to find an optimized composi-
tion semi-automatically. To this end we leverage data flow analysis
to generate a structured composition model and use two different
techniques for the optimization, a constraint programming and
an integer programming approach.

I. INTRODUCTION

In the last few years, Service-Oriented Computing (SOC) is
gaining momentum as a means to develop applications based
on the Service-Oriented Architecture (SOA) paradigm [1].
The core entities of each SOA are loosely-coupled software
services implementing parts of the main business functionality.
These business services, combined with services from other
business partners or public services, can be orchestrated into
composite services, a task generally known as service compo-
sition. Currently, the process of composing services is mainly
static by wiring together several services that are enacted using
a composition engine. However, in distributed environments a
static composition may lead to inflexible and non-adaptable
application architectures. Existing services may raise errors or
become unavailable and need to be replaced by other services
resulting in a better performance or lower cost. Quality of
Service (QoS) is an emerging category within SOC to express
non-functional quality attributes of a service, such as the
response time, cost or the supported security protocols. QoS
is increasingly important when composing services because a
degrading QoS in one of the services can negatively affect the
QoS of the overall composition.

Most existing approaches lack a coherent framework for
the specification, optimization as well as the generation of an
executable composition [2–5]. Contrary to existing approaches
which only consider hard constraints during the optimization,
the approach presented in this paper allows to use both,
hard and soft constraints to specify QoS. The former indi-
cate required constraints that have to be satisfied during the
composition process whereas the latter represent optional QoS
constraints that are “nice to have” and should be satisfied if

possible. To this end, the proposed composition approach does
not optimize to find the best solution overall, however, it tries
to find an optimal solution within the constraint boundaries
given by the user as part of the composite service specification.
In this paper our contribution is twofold: Firstly, we focus
on the specification aspect of QoS-aware compositions on
a microflow level, i.e., fine-grained short-running composite
services, more on a technical level that implement parts of a
business process or a so-called macroflow [6]. In particular,
we describe VCL (Vienna Composition Language), a simple
domain-specific language for specifying QoS-aware service
compositions. In this language, developers can specify what
functional and non-functional constraints (i.e., QoS) each
service in a composition has to fulfill. QoS can be specified for
the overall composition as well as for single services by using
constraint hierarchies to express a fine-grained distinction of
the importance of a constraint. Secondly, we combine a set
of techniques and algorithms to transform and optimize a
composition specified in VCL: (a) we leverage and extend
an existing approach [7] to generate a structured composition
model from the unstructured specification in VCL by analyzing
the dataflow; (b) we optimize the structured composition
model from step (a) in terms of QoS by transforming it into
both, a constraint optimization problem (COP) and a linear
integer programming (IP) problem. The optimization process
will assign those service candidates to each activity in the
composition that fulfills all the required constraints and the
highest number of optional constraints in the hierarchy. If
required constraints cannot be fulfilled and no valid compo-
sition can be generated, the developer is asked to relax some
of the constraints and re-execute the aforementioned steps.
The approach is evaluated in terms of its performance to
demonstrate that the optimization is feasible to form the basis
for design-time composition and runtime re-composition.

This paper is organized as follows: Section II provides
a short overview of the Composition as a Service (CAAS)
approach and its foundations. Section III describes the domain-
specific composition language VCL. In Section IV we describe
our composition and optimization approach followed by an
evaluation in Section V. Section VI discusses the presented
approach by highlighting some of its benefits and applicability,
whereas Section VII describes some related work. Finally,
Section VIII concludes this work and highlights some future
work.

Client
Library

VCL
Specification

Infrastructure Level
Client Side

VRESCo Runtime Environment

Event
Database

Registry
Database

Certificate
Database

O
RM

 L
ay

er

Composition
Service

Notification
Engine

Publishing/
Metadata
Service

Management
Service

Querying
Service

Composition
Engine

Ac
ce

ss
 C

on
tro

l

Query
Interface

Management
Interface

Metadata
Interface

Publishing
Interface

Notification
Interface

Composition
Interface

Feature
Resolution

QoS
Aggregation &
Optimization

 Generation of
Executable

Composition

d

Deployment of
the Composite

Service

e

c

a

Structured
Composition
Generation

b

Fig. 1. Architectural Overview of Composition as a Service with VCL

II. OVERVIEW

One of the most important aspects when performing ser-
vice composition in general, and QoS-aware composition in
particular, is the possibility to coherently specify, optimize
and deploy a composite service without the need to configure
and setup all the infrastructure required to deploy and run
a composite service. Therefore, our architectural approach
follows service-oriented principles by providing “Composition
as a Service” (CAAS) [8]. The idea is to provide composition
as a hosted environment to reduce the need to install and
maintain a composition infrastructure, thus it allows to specify,
generate and deploy compositions on-the-fly. This principle is
well-aligned with recent IT trends in utility computing such
as Infrastructure-as-a-Service and Cloud Computing in gen-
eral [9]. The basic architecture is illustrated in Figure 1 specif-
ically showing the contribution of this paper, the Composition
Service and its algorithms, on the left-hand side (Infrastructure
Level) and the existing VRESCO runtime environment on the
right-hand side (which is briefly explained below).

A. VRESCo Runtime

The VRESCO project (Vienna Runtime Environment for
Service-Oriented Computing) [10] is a novel runtime and
programming model based on an extensible service metadata
model [11]. It addresses typical software engineering related
issues in SOC, such as publishing services, dynamic binding
and invocation as well as service discovery by using a type-
safe query mechanism. Services and associated metadata are
published into a registry database which is accessed using an
ORM (Object Relational Mapping) layer. The query language
VQL (similar to the Hibernate Query Language) is used to
query all information stored in this database [10], whereas
the event notification engine is responsible for publishing

events when certain situations occur (e.g., a new service
is published, QoS changes, etc.) [12]. The VRESCO core
services are accessed either directly using SOAP or via the
client library which provides a simple API. Furthermore, it
offers mechanisms to dynamically bind and invoke services
using the integrated DAIOS framework [13]. Finally, a QoS
monitor [14] has been integrated to continuously measure the
QoS attributes (e.g., response time, throughput, etc.) of the
services. A detailed description of VRESCO is out of scope
of this paper, however, the respective parts of the VRESCO
project are described where needed to understand the approach
presented in this paper. We refer the reader to the other papers
on selected aspects of the VRESCO project.

B. Composition as a Service

By leveraging VRESCO’s core services (such as publishing,
querying, metadata), we integrate a Composition Service on
the infrastructure level to encapsulate the overall composi-
tion approach. The user interacts with the system only by
specifying a composition using a constraint-based composi-
tion language called VCL. This language allows to specify
constraints on inputs, outputs, pre- and postconditions, and
QoS. As mentioned above, we apply the theory of constraint
hierarchies [15] for specifying the desired QoS for a service in
the composition (local constraint) or the overall composition
(global constraint). Formally, a constraint hierarchy H is
a multiset of labeled constraints. H0 denotes the required
constraints in H . The sets H1, H2,. . . ,Hn are defined for the
hierarchy levels 1,2,. . . ,n representing the optional constraints
with different strengths. Each level expresses constraints that
are equally important. In our approach the hierarchy levels
are labeled {required, strong,medium, weak} but this can
be adapted to represent different hierarchy levels. When spec-

ifying QoS requirements for composite services, constraint
hierarchies are very useful because many QoS requirements
are “nice to have” but not necessarily required. Therefore, the
composition process is more flexible compared to a model
where only hard constraints are supported.

In our approach, the Composition Service can be accessed
by using the VRESCO client library. Upon reception of a
composition request, the composition service generates a com-
posite service from the initial VCL description by performing
tasks (a)–(e) from Figure 1. When a composite service can be
generated, it will be deployed to the underlying composition
engine and the newly created endpoint of the composite
service will be returned to the caller. Besides describing the
composition language VCL, we focus on steps (b)–(c); step
(a) is briefly explained for the sake of completeness. Steps (d)
and (e) involve the automated generation and deployment of
the executable composition based on the outcome of the QoS
optimization. Due to space restrictions, a detailed description
of these parts is out of scope of this paper and described in
more detail in [16].

III. VIENNA COMPOSITION LANGUAGE

The main idea behind VCL is to provide a simple domain-
specific language for specifying QoS-aware composite ser-
vices. The language follows a constraint-based approach in
the sense that all functional and non-functional aspects of
a composition are declared as constraints on features that
should be composed. This notation is based on VRESCO’s
metadata model [11], which abstracts from concrete services
and its operations by using the notation of features that can
be grouped into categories. For example, one can define a
category Hotel Services with a feature BookHotel as
part of the application metadata. At publishing time of a
certain hotel booking service, the mapping from a concrete
service operation to the feature has to be specified includ-
ing the mapping of input and output to data concepts in
the metadata model. The VRESCO publishing and metadata
services provide the necessary functionality. The main reason
for implementing such a model is to achieve fully transparent
dynamic binding and invocation of a service (including medi-
ation if the data of a service do not match with the feature in-
and output). For example, a user can issue a query for services
implementing the BookHotel feature and dynamically bind
to one of the services found by the query without bothering
about the concrete service details.

This feature-driven metadata model is leveraged by VCL
to describe the core entities that are composed. Basically,
each VCL specification consists of three major blocks: feature
definition, (global and feature) constraints and the business
protocol. The following EBNF grammar rules show the formal
specification of the core parts. We do not depict all terminal
symbols in details due to space restrictions1.

1A work-in-progress version of the full grammar in EBNF and MGram-
mar notation is available at http://www.infosys.tuwien.ac.at/staff/rosenberg/
vresco/.

1 <Composition> : : = composition <Name>;
2 <Feature> { <Feature> }
3 <GlobalConstraint>
4 { <FeatureConstraint> }
5 <BusinessProtocol>
6 <Feature> : : = feature <Alias>,
7 <CategoryName>.<FeatureName>;
8 <GlobalConstraint> : : = constraint global
9 ”{” <ConstraintBody> ”}” ;

10 <FeatureConstraint> : : = constraint <Alias>
11 ”{” <ConstraintBody> ”}” ;
12 <ConstraintBody> : : = <InputConstraint>
13 <OutputConstraint> <PrecondConstraint>
14 <PostcondConstraint> <QoSConstraint>

Each constraint type (global and local) imposes restrictions
on the input and output, pre- and postconditions and on QoS
(cf., <ConstraintBody>). Input and output statements of
a global constraint can be used to define the interface of the
composed service, whereas input and output statements on a
feature are used to constrain the feature input and output that
is required in the composition. The final part is the speci-
fication of the business protocol (<BusinessProtocol>)
describing how the services should be invoked and which data
is assigned to the services. This is achieved by allowing to
specify typical control flow constructs such as conditionals
(check statement), loops (while statement) and a statement
to invoke a service (invoke statement). For a complete list of
statements please refer to the VCL specification as mentioned
above.

1 compos i t ion tripplanner ;
2
3 f e a t u r e sf , ∗ .SearchFlight ;
4 f e a t u r e sh , ∗ .SearchHotel ;
5 f e a t u r e bf , ∗ .BookFlight ;
6 f e a t u r e bh , ∗ .BookHotel ;
7
8 c o n s t r a i n t global {
9 qos = {

10 responseTime = 5000 , required ;
11 availability = 0 . 9 5 , s t ro ng ;
12 price = 0 . 5 , weak ;
13 }
14 }
15
16 c o n s t r a i n t sf {
17 input = {
18 SearchFlightRequest [
19 # d e f i n e r e q u i r e d members
20]
21 }
22 output = {
23 # d e f i n e r e q u i r e d o u t p u t
24 }
25 }
26
27 invoke sf { . . . } ;
28 invoke sh { . . . } ;
29
30 check (sf .Flights .Count > 0 & sh .Hotels .Count > 0) {
31 invoke bf { . . . } ;
32 invoke bh { . . . } ;
33 }
34
35 re turn {
36 BookingResponse [
37 # a s s i g n r e s u l t
38]
39 }

Listing 1. VCL Sample

Listing 1 shows features and global constraints of a sim-
plified trip planner composite service (lines 3–14). In our
approach, we assume that each feature is defined in the

VRESCO metadata model and concrete services are mapped
to that feature. Several QoS attributes can be used to constrain
features with non-functional requirements, either globally or
for a single feature. Please refer to Table I for a subset of
QoS attributes currently supported in VCL. By specifying
responseTime = 5000 (line 10) we constrain the re-
sponse time of the overall composition to ≤ 5000. We simply
use the = character instead of ≤ because the response time
is a QoS attribute with descending dimension in the sense
that a lower value is generally better (the same holds for
price). For the availability attribute it is vice-versa (it
has ascending dimension meaning that a higher value is better).
Additionally, we set the response time constraint strength to
required to express that this constraint has to hold. The two
other constraints are optional with different strength values. A
feature constraint for expressing constraints for input and out-
put of a given feature is given from lines 16–25. In this case we
look for a flight search service with a specific feature input and
output. From lines 27–39, the business protocol specification
for the trip planner is specified. Both search features (sf and
sh) are invoked followed by a simple check whether some
flights and hotels are found. If true, both booking features
(bf and bh) are invoked. At the end, a BookingResponse
message is returned containing information about the booking.
In this example we omit data assignment in the empty curly
braces for readability. The business protocol specification does
not have an explicit notation for specifying which parts are
executed sequentially and which parts can be executed in
parallel (i.e., we do not have AND-splits, XOR-splits as
explicit constructs [17] as many graph-based approaches).
Such an unstructured composition approach enables a simpler
specification from a user perspective, however, it may lead
to errors during the execution (e.g., deadlocks) if not properly
validated. Thus, a transformation to a structured composition –
originally referred to as structured process model (where each
split has a corresponding join and all split-join combinations
are properly nested) is desirable as described in detail in the
next section.

Please note that VCL is used to describe a QoS-aware
composition that has to be generated by the Composition
Service. However, VRESCO does not enforce these VCL
specifications if the QoS cannot be guaranteed at runtime.
It is a best effort approach to find the services with the
QoS as specified in VCL. However, if no service satisfies
the VCL specification no valid composition can be generated.
Therefore, VRESCO cannot enforce these specifications since
most of the services that are composed are typically provided
by other partners.

IV. QOS-AWARE COMPOSITION AND OPTIMIZATION

The main goal of the composition and optimization ap-
proach is to assign an available service from the VRESCO
registry to each feature in a VCL composition so that all global
and local required constraints are satisfied and maximum
number of optional constraints are fulfilled.

A. Composition Model

A VCL composition CSvcl consists of a set of n features
F = {f1, f2, . . . , fn} to be composed. For each feature
fj , a set of m service candidates Sj = {s1j , s2j , . . . , smj}
is available in VRESCO that implement a given feature.
Each composition CSvcl can be subject to global constraints
Cgc = {Igc, Ogc, Pgc, Egc, Qgc}. Each feature fj can also
have a set of constraints Cfc = {Ifc, Ofc, Pfc, Efc, Qfc}.
These constraints represent a multi-set containing input con-
straints I , output constraint O, precondition constraints P ,
postcondition constraints E (effects), and QoS constraints Q.
Constraints I, O, P, E specify restrictions on data of a feature
or the composition itself and are not further considered in
this paper because they do not play a major role during the
QoS optimization process. The QoS constraints Qgc = Qfc =
(〈qrt, s〉, 〈ql, s〉, 〈qp, s〉, 〈qav, s〉, 〈qac, s〉, 〈qtp, s〉, 〈qrm, s〉,
〈qsec, s〉) represent a vector of labeled QoS constraints. The
first element of each pair is the QoS attribute value (see
the first two columns of Table I for details) and the second
element s ∈ H represents the constraint strength as defined
in the hierarchy H . Additionally, each service candidate sij

implementing a given feature fj has a vector of QoS values
(retrieved from the VRESCO registry). Based on [2], we
merge the service candidates with their QoS attributes in a
matrix Q = (Qij ; 0 ≤ i < n; 0 ≤ j ≤ 7). Each row
corresponds to a service candidate, whereas, the columns
correspond to all the QoS values of a service candidate sij .
We assume that the QoS attributes are numbered from 0 to
7 according to their order in Table I. In fact, our approach
supports much more QoS attributes than the ones specified in
Table I, however, for brevity we only choose a subset of values
for this paper. A full list of available QoS attributes is given
in [16].

B. Feature Resolution and Pre-filtering

Feature resolution is the process of querying and match-
ing all services candidates that implement a given feature
and its required feature constraints as specified in VCL. We
assume that each feature of an application is defined in
the VRESCO metadata model as part of the requirements
engineering process. Additionally, we apply a pre-filtering
technique to filter service candidates that do not fulfill feature
QoS requirements with strength required. This reduces the
number of service candidates for each feature that are later
used in the optimization process, thus, speeding up the overall
process. We use the VRESCO query language to implement
the feature resolution.

C. Generating a Structured Composition

Existing composition engines (such as WS-BPEL) are ca-
pable of enacting structured process models and they usually
cannot deal with unstructured process models (WS-BPEL has
two exceptions: it allows cross links between parallel services
and parallel blocks). Based on the approach presented by
Eshuis et al. [7], we refer to a composition that is based
on a structured process model as structured composition. As

ROOT

sf

sh

IF-T-E

THEN

ELSE

bf

bh
ENDIF

(a) Annotated ADG

ROO
T

sf

sh

IF-T-
E

THE
N

ELSE

bf

bh

C C C

C

C C

C CEND
IF

(b) Structured Composition

Fig. 2. Generation of a Structured Composition

aforementioned in Section II, a structured model is desired and
necessary for our approach based on the following reasons: i)
it enables enactment of a structured composition on existing
composition or workflow engines, thus, removing the need
to implement an execution engine for VCL; ii) it allows to
detect flaws in the unstructured composition such as deadlocks
which may lead to runtime errors at a later stage; iii) it
facilitates an efficient QoS aggregation based on well-known
workflow and composition patterns [17]. QoS aggregation is
needed during the optimization to determine an aggregation
formula for a composition based on aggregation formulas
the composition patterns [18]. The generation of a structured
composition follows three basic steps: i) creation of an abstract
dependency graph (ADG) to analyse the data flow of the
business protocol as specified in VCL; ii) generation of the
structured composition from the ADG and iii) annotating the
control flow decisions in the structured composition with either
AND (executed in parallel) or XOR (conditional execution).

Abstract Dependency Graph: Each feature in the VRESCO
metadata model expects an input and an optional output
message, that is composed of well-defined data concepts. A
data concept is used to uniquely define a certain type from
a domain model (such as a Customer or an Address).
Additionally, atomic concepts exist to define atomic types such
as integers or boolean. The abstract dependency graph can
be defined based on the input/output data concepts of each
feature. If a feature f2 expects an input that is the output
of a feature f1, then we say f2 depends on f1. All data
dependencies are captured in a graph data structure by using an
adjacency list. The functions input(f) and output(f) in the
following definition are used to get the input and output data
concept of a feature. An ADG is given by the tuple (F,E):
• A set of features F = {f1, f2, . . . , fn}
• E = {(f, f ′) ∈ F × F | output(f) ∩ input(f ′)) 6= ∅}
In Figure 2(a) an ADG for the simple VCL from Listing 1 is

depicted. In contrast to [7], we annotate the ADG with special
nodes representing control flow information such as condition-
als. The node IF-T-E is the abbreviation for IF-THEN-ELSE
with its immediate successors THEN and ELSE representing
the two possible conditional branches. Additionally, we add a
root node that represents the composite service interface de-
fined as global input constraint. In the ADG, this node has no
inputs and outputs all data concepts of the composite service to
its descendants. These special nodes are required in a later step
to automatically annotate the incoming and outgoing edges of

each feature to determine the correct branching type (AND,
XOR). Additionally, we need this information to facilitate
the generation of the executable composite service from the
structured composition (not discussed in this paper). Loops,
however, cannot be used in the algorithm from [7], because
the graph has to be acyclic. Therefore, we insert a special
loop start and end node and annotate all elements between
the start and end node with their expected loop count given
by the user to correctly calculate the QoS. During execution
time, we refine the loop count using a simple analysis of the
composition logs.

Generating the Structured Composition: This is done based
on the ADG and the algorithm presented by Eshuis et al [7].
They provide a hierarchical view, representing a service (a
feature in our terminology) as leaf node and blocks as non-leaf
nodes. The graphical representation of the resulting structured
composition is shown in Figure 2(b). The beginning and end of
a block has a split and a join node (the node with C as label; C
stand for composite). The beginning and end of a composition
also have a composite node because the whole composition
is also treated as a block. For a detailed description on how
to construct that node, please consult the paper from Eshuis
et al. After having generated the structured composition, we
need to annotate each C-block with either AND or XOR to
specify the branching type. Our rule is simple: we annotate
each block with AND except blocks where the parent node is a
special IF-THEN-ELSE node. In addition to that, we associate
all services candidates Sj from the feature resolving process
with each feature fj in the structured composition graph. This
information provides the input for generating the QoS-aware
optimization problem.

D. QoS-Aware Optimization

The goal of the QoS-aware optimization is an optimal
selection of one service candidate sij ∈ Sj for each feature fj

where all the required global and local constraints are satisfied
and a number of optional constraints from the constraint
hierarchy H are satisfied. It is important to note that we
do not search for the overall best solution in the search
space, however, we search for the best solution within the
boundaries given by the user constraints. We present two
different approaches for modeling the QoS-aware optimiza-
tion, a constraint optimization problem (COP) and an integer
programming problem (IP). The reason for devising an IP
solution as an alternative is based on the fact that most

constraint-based approaches have scalability problems when
applied to medium and large-scale practical optimization prob-
lems [19], however, the COP solution provides a simpler way
of handling constraint hierarchies. In Table I we summarize
all the QoS attributes including their aggregation formulas for
the composition constructs supported in our approach. For the
conditional (XOR) case, pi is the probability that one path is
chosen. For security and reliable messaging we assume that all
services in the composition have to support the same security
protocol and reliable messaging respectively to enable it for
the composite service. In case of security, we only listed the
aggregation for X.509 but it would be the same for every other
mechanism. A more advanced mechanism will be considered
in future work.

1) Constraint Optimization Problem: A COP is a constraint
satisfaction problem (CSP) in which constraints are weighted
and the goal is to find a solution maximizing a function of
weighted constraints. A CSP is defined as a tuple 〈X, D, C〉
where X represents a set of variables, Di represents the do-
main of each variable Xi and C represents a set of constraints
over the variables X . A solution is an assignment of values
from the variable’s domain D to each variable Xi ∈ X
satisfying all the constraints C. For modeling our problem as
a COP, we have to distinguish between global constraints and
feature constraints. Both constraint types can have required
and optional QoS constraints. Each required constraint has to
be fulfilled, otherwise no solution can be found. All optional
constraints (global and local) will be added to the objective
function that has to be maximized. As aforementioned, all
required feature constraints have already been pre-filtered,
therefore, it is ensured that only service candidates have to
be considered that fulfill all required feature constraints. This
may reduce the number of constraints in the problem space.

a) Feature Constraints: Modeling feature constraints re-
quires to add all service candidates Sj for each feature fj

as variables to the problem space. As we only want to select
one service candidate from all available services Sj to execute
a feature, we have to add the following selection constraint
given that yij denotes the selection of a service candidate sij

to execute a feature fj (yij is modeled as a boolean decision
variable2): ∑

i∈Sj

yij = 1,∀j ∈ F (1)

Each feature fj can be subject to feature constraints, there-
fore, we need to add the following constraint for each feature
constraint Qfc to determine the selected QoS value qjk of a
feature (local selection). qjk represents the selected QoS value
for a given feature fj .

qjk =
∑
i∈Sj

Qik ∗ yij ,∀k ∈ Qfc (2)

Depending on the QoS attribute dimension (ascending, de-
scending, exact) we need to add the corresponding constraints
for each QoS attribute to capture whether an optional QoS

2When using a boolean decision variable, 0 is used for false and 1 for true.

constraint cjk is satisfied (cjk is represented as a boolean de-
cision variable). The value qjk is the value from constraint (2).
For descending dimension, cjk = (qjk ≤ Qfck

) is added,
for ascending dimension cjk = (qjk ≥ Qfck

), and for exact
dimension the resulting constraint is cjk = (qjk = Qfck

).
Additionally, we use the following function (3) to map the

constraint hierarchy levels to strength values that is then used
to in the objective function. Please note that these values are
flexible and can be changed to reflect a different mapping (e.g.,
give more weight to strong constraints).

strength(c) =

20 if c ∈ H1

10 if c ∈ H2

5 if c ∈ H3

0 otherwise

(3)

All the aforementioned constraints describe the selection of
an optional feature QoS value. These constraints are added
for each feature fj and maximized as part of the objective
function:

max
∑
j∈F

∑
k∈Qfc

cjk ∗ strength(Qfck
) (4)

b) Global Constraints: In order to add global constraints
(required or optional ones), we first need to create an aggre-
gation formula depending on the structured composition as
shown previously in Figure 2(b) and the aggregation formulas
as shown in Table I. We use a recursive algorithm to traverse
the structured composition from the previous step and generate
an aggregation formula for each feature fj . For example, when
aggregating the response time for the first composite block
from Figure 2(b) (containing the feature sf and sh), the
following aggregation constraint applies (k is the index for the
QoS constraint, in this example it would be 0 for the response
time):

ak = max
j∈{sf,sh}

{qjk} (5)

In the following, we use ak to represent the aggregation
constraint of the k-th QoS attribute which is added for every
global constraint that is specified by the user in the VCL
specification. In case the global QoS constraint is required,
we add another constraint depending on the QoS attribute
dimension. For QoS with descending dimension, ak ≤ Qgck

is added, for ascending dimension ak ≥ Qgck
, and for exact

dimension the resulting constraint is ak = Qgck
represents the

global QoS constraint where k is the QoS attribute index.
In case the global QoS constraint is optional, we have to add

a decision constraint to check whether an optional constraint
has been fulfilled. Again depending on the QoS attribute
dimension, we add the following constraints: For descending
dimension, ck = (ak ≤ Qgck

) is added, for ascending
dimension ck = (ak ≥ Qgck

), and for exact dimension the
resulting constraint is ck = (ak = Qgck

). Finally, we have to
add these decision constraints multiplied with their strength
value to the objective function from (4) to get the overall
objective function:

Attribute Unit Sequence Conditional (XOR) Parallel (AND) Loop

Response Time (qrt) msec
Pn

i=1 qrt(fi)
Pn

i=1 pi ∗ qrt(fi) max{f1, .., fn} qrt(f) ∗ c

Latency (ql) msec
Pn

i=1 ql(fi)
Pn

i=1 pi ∗ ql(fi) max{f1, .., fn} ql(f) ∗ c

Price (qp) per invocation
Pn

i=1 qp(fi)
Pn

i=1 pi ∗ qp(fi)
Pn

i=1 qp(fi) qp(f) ∗ c

Availability (qav) percent
Qn

i=1 qav(fi)
Pn

i=1 pi ∗ qav(fi)
Qn

i=1 qav(fi) qav(f)c

Accuracy (qac) percent
Qn

i=1 qac(fi)
Pn

i=1 pi ∗ qac(fi)
Qn

i=1 qac(fi) qac(f)c

Throughput (qtp) invocation/sec min{f1, .., fn}
Pn

i=1 pi ∗ qtp(fi) min{f1, .., fn} qtp(f)

Reliable Messaging (qrm) {true, false} q′rm =

true ∀1<i≤nqrm(fi) = true
false ∃fi∈F qrm(fi) = false

Security (qsec) {None,X.509,. . .} q′sec =

X.509 ∀1<i≤nqsec(fi) = X.509
None otherwise

TABLE I
QOS ATTRIBUTES AND AGGREGATION FORMULAS

max
(∑

j∈F

∑
k∈Qfc

cjk ∗ strength(Qfck
)

+
∑

k∈Qgc

ck ∗ strength(Qgck
)
)

(6)

The objective function (6) is then maximized by the solver
to find an optimal solution within the constraint boundaries set
by the user in the VCL description. All the values in our COP
are scaled to integers by multiplying them with 100. Due to
the fact that we only allow two decimal places in VCL we do
not have any precision loss.

2) Integer Programming Approach: An IP optimizes a
linear objective function that is subject to linear equality and
linear inequality constraints. Compared to the CSP approach,
there are a few changes that are needed when modeling the
QoS-aware composition problem as IP. We have to define a
new objective function calculating an overall utility value for
each feature fj considering the user’s QoS constraints and their
strength. Additionally, we need to linearize the aggregation
rules for qac and qav because they use the product to aggregate
the QoS for a sequence and parallel execution of features.

a) Feature Constraints: Feature constraints are handled
by using a utility function that is calculated for each service
candidate. The selection constraint (1) is still valid in the
IP formulation. For calculating the QoS utility function for
each service, we first need to scale all the QoS values to a
uniform representation. Contrary to other approaches in this
area [2], we do not use simple-additive weighting scaling
the values, however, we scale all values between [0, 100]
depending on the percentage to which a QoS attribute of a
service candidate fulfills the optional constraint imposed by the
user. For example if the user specifies a optional availability
constraint on a feature fj with the value 0.95 and the QoS
value of the service candidate is 0.99, we set the scaled
value to 100 because the optional feature constraint is 100
percent satisfied (in fact is over-satisfied). The overall objective

function is shown in (7):

max

(∑
j∈F

∑
i∈Sj

yij

∗
∑

k∈Qfc

scale(Qik, Qfck
) ∗ strength(Qfck

)
)

(7)

The function scale scales the k-th QoS value Qik of a
service candidate si between [0, 100] depending on the actual
QoS feature constraint value Qfck

specified by the user in
VCL and the QoS dimension (ascending, descending, exact).
As a strength we use (3).

b) Global Constraints: For adding the global constraint,
we follow a similar approach as in the CSP solution. We first
aggregate the QoS attribute using a similar function as in the
CSP approach, with the exception that we linearize the product
aggregation rules using the ln (as shown in [2]). Whenever a
global QoS constraint is required, we add a linear equality
or inequality to the problem space. If a global constraint is
optional, we add it to the overall objective function that has
to be maximized.

E. Implementation Aspects

The Composition Service was implemented as part of the
VRESCO project in .NET/C# using the Windows Commu-
nication Foundation (WCF) for realizing the Web service
communication. For querying the services as part of the feature
resolution, we have used the VRESCO Query Language
(VQL) to retrieve all deployed service instances. VCL was
implemented by using the Microsoft Oslo framework3, in
particular using MGrammar, a toolkit for rapidly implementing
domain-specific language for the .NET environment. The op-
timization algorithms are implemented by using the Microsoft
Solver Foundation4, a recently released optimization library
supporting CSP, LP, MILP and Quadratic programming. For
executing the generated composition we use the Microsoft
Windows Workflow Foundation (WWF) [20]. The overall

3http://msdn.microsoft.com/en-us/oslo/
4http://code.msdn.microsoft.com/solverfoundation

 0

 1000

 2000

 3000

 4000

 5000

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

se
c)

Number of features

Feature Resolution Performance

10 candidates
25 candidates
50 candidates
75 candidates

100 candidates

(a) Feature Resolution Performance

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

se
c)

Number of features

Optimization Performance (IP)

10 candidates
25 candidates
50 candidates
75 candidates

100 candidates

(b) Optimization Performance (IP)

Fig. 3. Performance Evaluation

implementation of the composition service consists of approx-
imately 5000 lines of C# code (without the VRESCO code
itself).

V. EVALUATION

In order to demonstrate the effectiveness of our approach
we measure the performance of various crucial components
such as the querying engine and the optimization approach.
Therefore, we have written a tool to deploy features, cate-
gories, services and QoS values in VRESCO. Additionally,
it generates VCL files with a given number of features and
service candidates per feature. All the performance tests were
executed on an Intel Xeon Dual CPU X5450 3.0 GHz with
32 GB of memory (although memory is not an issue in our
tests).

A. Feature Resolution

The first important aspect is the performance of the feature
resolution step. A query encodes all feature constraints (except
optional QoS) to find concrete service candidates in the
VRESCO registry as describe earlier in the paper. This step
involves one query per feature in the composition using our
VQL query language that are translated to SQL queries at
runtime. We use a parallel query execution to speed up the
performance as depicted in Figure 3(a) (the average of 10
repetitive runs). On the x-axis we represent the number of
features in the composition (from 5–100). The y-axis shows
the query time for depending on the number of candidates
(10, 25, 50, 75, 100). For example, in a composition using 100
features, and each feature is implemented by 10 candidates the
overall query time is less than a second (734 msec) and grows
to more than 4 sec for 100 service candidates. Fortunately, the
number of candidates is usually low (approx. 1–5), therefore,
resulting in a very good overall query performance.

B. COP-based Optimization

For measuring the performance of the COP-based solver,
we have generated small datasets as we expected a slow
performance based on the complexity of the COP in general

(NP-hard), and our problem in particular. In Table II the per-
formance of the COP approach is depicted. The first column
shows the number of features (from 5–25). Columns 2–4 show
the performance in msec based on the number of candidates
per feature (3, 5, 7). Each VCL file used for measuring the
performance contains two global constraints and one local
constraint per feature.

Features 3 cand./feature 5 cand./feature 7 cand./feature

time in msec

5 16 23 28
10 22 77 203
15 782 106952 exceeded
20 58789 exceeded exceeded
25 exceeded exceeded exceeded

TABLE II
COP PERFORMANCE

The results clearly show the bad performance (and nega-
tively exceeded our expectations) as soon as the number of
features is greater than 15 (and 5 candidates per feature). The
value “exceeded” expresses that our timeout value of 120000
msec was exceeded. This makes the solver impractical for
large QoS-aware optimization problems, however, for small
scale problems it is still usable. Moreover, the current solver
allows to save the internal solver state so that it can be re-
used and constraints can be added/changed or removed and
then resolved. This will reduce the optimization time when
the user specified constraints do not hold and the user has to
relax some constraints.

C. IP-based Optimization

For measuring the performance of the IP solver, we have
generated a number of VCL compositions (sequential and
parallel constructs) with different number of features (from
5 to 100) and with increasing number of service candidates
per feature (5, 25, 50, 75, 100). Each VCL file contains 4
global constraints and each feature has 4 feature constraints.
We do not use any pre-filtering as part of the feature resolution
in order to have the exact number of all the candidates per

feature as given above. The performance results are depicted
in Figure 3(b) (average of 10 repetitive runs). The x-axis
shows the number of features, the y-axis shows the time in
msec. Each function in the plot displays the runtime in msec
based on the number of candidates per feature on the x-axis.
The performance shows good results even for medium-size
compositions (100 features), where a solution for 10 service
candidates can be found in 110 msec and for 100 service
candidates in 1145 msec.

D. End-to-End Performance
Finally, we present the end-to-end performance to compare

all aspects involved to generate a composite service. In Fig-
ure 4, the performance of the VRESCO Composition Service
is shown for an increasing number of features on the x-axis
and 10 service candidates for each feature.

 0

 2000

 4000

 6000

 8000

 10000

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

se
c)

Number of features

End-to-End Composition Performance

VCL Compilation
Feature Resolution

Structured Composition
QoS Optimization (IP)

Code Generation and Deployment

Fig. 4. End-to-End Performance for 10 Service Candidates

The performance of the different components is shown in
different colors. Clearly, the feature resolution requires most
of the time as shown in detail before. The code generation and
deployment involves the generation of the WWF code and all
required complex data types in form of C# classes (at least
two for each feature having a complex input and output data
type). This procedure is almost constant at around 2000 msec.
The generation of the structured composition grows with the
number of features. The other aspects are not significant in
terms of their overall performance. The overall time needed
to dynamically create and deploy a composition is reasonable
but leaving some room for improving selected aspects.

VI. DISCUSSION

The presented QoS-aware composition approach is based on
the idea that compositions are hosted and can, therefore, be
outsourced to realize Composition as a Service (CAAS). The
approach is integrated into the VRESCO runtime environment
and combines a number of novel concepts such as support for
hard and soft QoS constraints and the automated generation of
an executable composite service without the need for setting
up and maintaining a composition infrastructure.

Currently, one of the main application areas for the CAAS
approach is to specify QoS-aware composite services on a

microflow level [6]. Compared to existing macroflow-based or-
chestration languages such as BPEL, these microflow services
usually define a simple business protocol and are mainly used
to define short running processes that do not have multi-party
interactions. An efficient development and provisioning of
QoS-aware microflows is important to implement larger, more
coarse-grained business processes (macroflows). Therefore,
the CAAS approach addresses adaptive behavior in a bottom-
up manner by starting at the technical level of a business
process implementation.

In particular, CAAS supports the development of adaptive
behavior in two ways: Firstly, it leverages VRESCO as the
implementation platform, therefore, we gain adaptiveness by
using its dynamic binding and re-binding capabilities. In ad-
dition, by building upon VRESCO’s feature-driven program-
ming model, we additionally support adaptiveness by allowing
to add new services or exchange existing ones transparently
for higher-level macroflows (including runtime mediation).
Secondly, adaptiveness is actively supported by the presented
approach based on the fact that the QoS optimization can be
re-executed for example by sending a request to the composite
service or re-optimizing in an offline-mode. This ensures that
the dynamically generated composite services always use the
”best” service candidates that match all user constraints as
initially specified in VCL.

VII. RELATED WORK

Applying IP for solving the QoS-aware optimization prob-
lem has been used in other works. However, existing ap-
proaches only consider QoS as hard constraints, therefore,
reducing the practical applicability and leading to over-
constrained systems (i.e., systems with existing contradictory
constraints in the problem space) that cannot be solved. As
a consequence, we leverage constraint hierarchies [15] as a
mechanism to solve such over-constrained systems by using
labeled constraints to model hard and soft constraints. This
approach increases the probability that a solution can be found
and enables the specification of QoS that is ”nice to have”.

Zeng et al. [2] presented a solution of the composition prob-
lem by analyzing multiple execution paths of a composite ser-
vice which are specified using UML statecharts. They model
the composition problem using different approaches, including
a local optimization approach and a global planning approach
using IP. METEOR-S [21] is a comprehensive framework
based on semantic Web technologies to specify, optimize and
execute a composition. Their approach leverages WS-BPEL
as an abstract process specification language where service
templates are used to specify constraints on services and QoS
that are matched against available services in a registry. The
major difference of both aforementioned approaches is the
fact that in our approach the user can specify global and
local constraints using VCL, a DSL defined specifically for
the purpose of specifying QoS constraints. Thus, we do not
necessarily find the best solution overall, however, we search
for the best solution within the boundaries specified by the
user (which does not have to be the general optimum). We

adapted some of the formalisms proposed by Zeng et al. to
model our problem.

Guan et al. [22] are the first who propose a framework
for QoS-guided service compositions which uses constraint
hierarchies as a formalism for specifying QoS. Their idea
of modeling functional requirements as hard constraints and
using constraint hierarchies to model QoS is in line with the
work presented in this paper, however, the authors use a branch
and bound algorithm that is only capable of solving sequen-
tial compositions, whereas, our approach supports multiple
composition constructs to be used. Additionally, the authors
do not present any empirical evaluation to demonstrate the
optimization performance of their approach.

Many other works related to QoS-aware optimization exist,
for example a genetic algorithm based approach [3] or an
approach based on a multi-objective stochastic program [5].
Common to these approaches is the fact that they only deal
with the optimization problem itself, without presenting an
end-to-end solution of the QoS-aware composition and opti-
mization problem as we propose in this paper.

VIII. CONCLUSIONS

QoS-aware service composition remains a hot research
area, since modern application architectures increasingly use
services available from other business partners or from the
Web. In this paper we have presented an approach for devel-
oping and optimizing QoS-aware composite applications by
leveraging constraint hierarchies as a formalism to represent
user constraints of different importance. The performance
results of our approaches are promising that this approach is
the foundation for QoS-aware runtime re-composition and re-
optimization.

The main aspect of our future work is to leverage the
VRESCO eventing infrastructure to perform efficient runtime
re-composition to reduce the need for continuous querying
for new or updated services or QoS. Additionally, we plan
to develop and evaluate a set of other algorithms (such as
genetic algorithms, tabu search and simulated annealing) to
experiment with a larger number of features and service
candidates.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube).

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
Oriented Computing: State of the Art and Research Challenges,” IEEE
Computer, vol. 40, no. 11, pp. 38–45, 2007.

[2] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “QoS-Aware Middleware for Web Services Composition,”
IEEE Transactions on Software Engineering, vol. 30, no. 5, pp. 311–
327, May 2004.

[3] G.Canfora, M. D. Penta, R. Esposito, and M. L. Villani, “An Approach
for QoS-aware Service Composition based on Genetic Algorithms,” in
Proceedings of the Genetic and Computation Conference (GECCO’05),
Washington DC, USA. ACM Press, 2005.

[4] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for web services
selection with end-to-end qos constraints,” ACM Transactions on the
Web, vol. 1, no. 6, 2007.

[5] W. Wiesemann, R. Hochreiter, and D. Kuhn, “A Stochastic Programming
Approach for QoS-Aware Service Composition,” in Proceedings of the
8th IEEE International Symposium on Cluster Computing and the Grid
(CCGrid’08), Lyon, France, May 2008.

[6] U. Zdun, C. Hentrich, and S. Dustdar, “Modeling Process-Driven and
Service-Oriented Architectures Using Patterns and Pattern Primitives,”
ACM Transactions on the Web (TWEB), vol. 1, no. 3, pp. 14:1–14:44,
2007.

[7] R. Eshuis, P. W. P. J. Grefen, and S. Till, “Structured service compo-
sition,” in Proceedings of the 4th International Conference on Business
Process Management, Vienna, Austria, 2006, pp. 97–112.

[8] F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic, and S. Dustdar,
“Towards Composition as a Service - A Quality of Service Driven Ap-
proach,” in Proceedings of the First IEEE Workshop on Information and
Software as Service (WISS’09), co-located with the 25th International
Conference on Data Engineering (ICDE’09), Shanghai, China. IEEE
Computer Society, Mar. 2009, pp. 1733–1740.

[9] R. Buyyaa, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp. 599–616, Dec. 2008.

[10] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “End-to-End
Support for QoS-Aware Service Selection, Invocation and Mediation in
VRESCO,” Technical University Vienna, Tech. Rep. TUV-184-2009-03,
Jun. 2009. [Online]. Available: http://www.infosys.tuwien.ac.at/Staff/
rosenberg/papers/TUV-1841-2009-03.pdf

[11] F. Rosenberg, P. Leitner, A. Michlmayr, and S. Dustdar, “Integrated
Metadata Support for Web Service Runtimes,” in Proceedings of the
Middleware for Web Services Workshop (MWS’08), co-located with
the 12th IEEE International Distributed Object Computing Conference
(EDOC’08), Munich, Germany. IEEE Computer Society, Sep. 2008.

[12] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Advanced
Event Processing and Notifications in Service Runtime Environments,”
in Proceedings of the 2nd International Conference on Distributed
Event-Based Systems (DEBS’08), Rome, Italy. ACM, 2008, pp. 115–
125.

[13] P. Leitner, F. Rosenberg, and S. Dustdar, “DAIOS – Efficient Dynamic
Web Service Invocation,” IEEE Internet Computing, vol. 13, no. 3, pp.
72–80, May/June 2009.

[14] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping Performance
and Dependability Attributes of Web Services,” in Proceedings of the
IEEE International Conference on Web Services (ICWS’06), Chicago,
USA, Sep. 2006.

[15] A. Borning, B. Freeman-Benson, and M. Wilson, “Constraint hierar-
chies,” Lisp and Symbolic Computation, vol. 5, no. 3, pp. 223–270,
1992.

[16] F. Rosenberg, “QoS-Aware Composition of Adaptive Service-Oriented
Applications,” Ph.D. dissertation, Technical University Vienna, Austria,
Jun. 2009.

[17] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, , and A. Barros,
“Workflow Patterns,” Distributed and Parallel Databases, vol. 14, no. 3,
pp. 5–51, Jul. 2003.

[18] M. C. Jaeger, G. Rojec-Goldmann, and G. Mühl, “QoS Aggregation for
Service Composition using Workflow Patterns,” in Proceedings of the
8th International Enterprise Distributed Object Computing Conference
(EDOC’04). IEEE CS Press, September 2004, pp. 149–159.

[19] K. M. Bayer, M. Michalowski, B. Y. Choueiry, and C. A. Knoblock,
“Reformulating constraint satisfaction problems to improve scalability,”
in Proceedings of the 7th Symposium on Abstraction, Reformulation and
Approximation, Whistler, BC, Canada, 2007, pp. 64–79.

[20] D. Shukla and B. Schmidt, Essential Windows Workflow Foundation,
1st ed. Addison-Wesley, 2006.

[21] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, “Constraint Driven
Web Service Composition in METEOR-S,” in Proceedings of IEEE
International Conference on Services Computing (SCC’04), Shanghai,
China, Sep. 2004.

[22] Y. Guan, A. K. Ghose, and Z. Lu, “Using constraint hierarchies to
support QoS-guided service composition,” in Proceedings of the IEEE
International Conference on Web Services (ICWS’06), Chicago, IL, USA.
IEEE Computer Society, 2006, pp. 743–752.

