
On Supporting the Design of Human-Provided

Services in SOA�

Daniel Schall, Christoph Dorn, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
Argentinierstr 8/184-1, 1040 Vienna, Austria

{schall,dorn,truong,dustdar}@infosys.tuwien.ac.at

Abstract. Collaboration platforms evolve into service-oriented systems,
promoting composite and user-enriched services. The problem we address
in this paper is the support of human interactions in SOA. Current col-
laboration tools do not support humans to specify different interaction
interfaces (services), which can be reused in various collaborations. We
focus on the design of Human-provided Services (HPS). Our contribu-
tions center around two main aspects of human interactions in SOA: (i)
an approach for designing service interfaces embodying human activities
as actions offered by Web (HPS) users; (ii) a tagging model for activities
and services to recommend resources in the design process. We discuss
techniques for mapping human activities onto Web services. We present
a recommendation algorithm that is based on collaborative tagging of
resources in SOA. Our algorithm helps to determine suitable resources
drawn from properties of user preferences and measured similarity of
human activities and actions.

1 Introduction

The global nature of the Web promotes access to the knowledge of an immense
large number of people. The Web enables the participation of users in collabora-
tions by various means. Currently, users interact with the Web and share content,
their knowledge, and opinions, etc. through Web sites, forums, Wikis, or blogs.
We have taken user participation on the Web a step further by introducing
Human-provided Services (HPS) utilizing SOA technologies and Web services
[1]. People can publish activities and their capabilities as Web services, creat-
ing a Web of HPSs interwoven with current Wikis, blogs, social networks and
enterprise services. We believe that HPS will be the future trend of human par-
ticipation on the Web and enterprise collaboration. Therefore, supporting users
in designing HPSs in an easy manner is an important issue. HPSs are exposed
as real Web service interfaces acting as interaction interfaces toward humans.
From the user’s point of view, services are represented as activities and actions
a user can perform in SOA-based collaboration environments. We believe that
users should be empowered to define and provide services. HPS use cases include

� Part of this work was supported by the EU project inContext (IST-034718).

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 91–102, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

92 D. Schall et al.

i) obtaining input or opinion from experts, ii) interactions with infield workers
to perform certain tasks, iii) mass collaboration of globally distributed teams
or communities by gathering results/output from users depending on expertise,
geographic location, and availability.

We have designed and implemented a framework [2] with the aim of sup-
porting HPSs as user-contributions in collaborations. While approaches such as
BPEL4People [3] target the support of human interactions as part of business
processes (i.e., workflows) by designing and executing a set of human tasks (cf.
WS-HumanTask [4]), HPS enables the definition of services offered by humans
independent of any process or task. We distinguish between (a) service — at
the technical level encompassing the definition of domain specific interaction in-
terfaces and input/output parameters — defined by users and/or communities
and (b) tasks to model the demanded (human) input as part of a workflow.

The goal of HPS is to provide a framework and tools enabling the engage-
ment of humans in distributed, large-scale collaborations using SOA. To enable
human participation through HPS, users must be able to utilize tools to design
and model their participations. These tools must be simple yet powerful enough
to deal with complexities in the service-design process. To date, most effort has
been spent on tools for Web service professionals and developers which however
cannot be used by novice users. Mashup editors1 are examples of how simple tools
can facilitate user participations and user driven processes by gathering and ag-
gregating different sources of knowledge. We argue that similar tools should be
provided for HPS design, enabling novice users to design their personal services,
thus creating a novel blend of SOA comprising human and software services.
In our previous work, we introduced a middleware enabling HPSs (i.e., registry,
discovery, and interactions). In this paper, we present methods and tools sup-
porting the user in the design of HPSs in SOA-based environments. We analyze
the complexity and challenges of the design process and present our solution.

Our goal is to provide powerful yet simple tools for users to define and provide
services. Such tools should automatically generate all the artifacts needed to
allow users to fully participate in interactions in SOA using Web services. This
paper presents an architecture and its implementation allowing humans to design
services for ad-hoc and process-centric collaborations, with the following key
contributions, (i) a methodology for incorporating human interactions in SOA,
(ii) design and implementation of the HPS designer architecture, giving users
the ability to design activity-centric interfaces which can be translated into low
level services descriptions (e.g., described in WSDL), and finally (iii) a method
for helping users in providing the right service by using tagging methods.

This paper is organized as follows: in Sec. 2 we outline our approach and
propose our solution to designing HPSs in SOA. We given an overview of the
HPS framework in Sec. 3, followed by Sec. 4 describing transformations and
mappings of human activities onto services. We introduce our recommendation
algorithm in Sec. 5 and show implemented tools for ranking and design in Sec.
6. Finally, we discuss related work in Sec. 7 and conclude the paper in Sec. 8.

1 E.g., http://pipes.yahoo.com/pipes/

On Supporting the Design of Human-Provided Services in SOA 93

2 Collaboratively Designing HPS

Dynamic collaborations typically take place using various communication chan-
nels and tools. The HPS middleware is a platform targeting SOA-based collabo-
ration scenarios involving both human and software services. In this section, we
first discuss the challenges in designing HPSs and present our approach. Then,
we provide an overview of the steps in the design process and show how users
are supported in finding/reusing exsting service artifacts.

– Interface transformation and generation: Designing and providing a service
should be as simple as writing a “blog entry”. Mapping human activities onto
Web services is challenging. Novice users have to be supported in designing
services in an easy and intuitive manner by hiding underlying complex pro-
cesses, constituting automatic service interface generation and translation
of service interfaces (e.g., WSDL) into GUI representations. Since standard
Web service technologies are used — at the technical level — to enable HPS,
versatile collaborations can be supported including interaction between hu-
mans as well as using HPSs in, for example, formalized processes. Human
input in a process is depicted in Fig. 1 (a) as Sends request.

– Recommendations for HPS Design: We argue that humans should be able to
design and provide their capabilities as services. Many HPSs may be available
and registered as services, potentially with different interface characteristics
and expertise of users. Users have to be supported in the design process by
recommending resources and interfaces which may already exist. We pro-
pose tagging mechanism helping users in expressing their expertise and an
algorithm based on collaborative filtering methods for ranking HPSs. Fur-
thermore, by tagging SOA artifacts, human activities, and actions – defining

Example Ac t iv i t y
Tags:

Review SOA
document
WSDL 2.0
spec i f i ca t ion
Wr i te Mob i le
WS repor t

HPS Middleware

Artifacts HPSs Activity
Tags

Delegates
task

Requests
opinion

(a)

Get human
input

Utilized for Human and Service Interactions:

Human task in
workflow

initiate
design

Profile
Similarity/
Ranking

Search/
Matching

Keywords:
Know-how and/or
activity type tags

Ranked
HPSs

Expertise as
input for HPS
recommendation

HPSs of users
with similar
interests

Create/
Reuse
Model

Publication
of Design
Artifacts

Create
Personal
Service

Activity types,
and service
interface

Register
HPS

(b)

Fig. 1. (a) Typical collaboration scenario involving human- as well as human-service
interactions. Tags are applied to various artifacts allowing for classification of services
and user activities. (b) The design: users can reuse existing models or define new
interfaces. Services are registered as personal services.

94 D. Schall et al.

the type of collaborations in which an HPS is used – allows search based on
user-defined keywords.

In Fig. 1, we show how the design is supported by utilizing tagged information
and collaborative filtering methods. Tagging becomes increasingly important in
today’s collaborations allowing people to associate metadata to various artifacts
— Web documents, links, messages, etc. (e.g., see [5] for usage patterns of tag-
ging) and keyword-based search of user annotated content. Similarly, tags in the
HPS framework are used to identify the context in which services and artifacts
are used.

Generally speaking, tags are keywords/terms associated to information. In this
work, we distinguish between tags assigned to activities, services, and actions.
In the following we discuss how to utilize this metadata in the design process
and detail the steps in Fig. 1.

1. Let’s assume a user initiates the design process by deciding to define a ser-
vice Fig. 1 (b). The common thing between the design of HPSs and, for
example, creating service mashups is that both are user-defined services or
processes. Like in most collaboration platforms, user-profiles managed by
the HPS middleware contain information such as past/current activities and
user preferences. Examples — in the computer science context — include
“reviewer for a conference”, “J2EE consultant”, etc. We refer to such key-
words available in the profile as activity information (e.g., predefined by the
user).

2. The search for service artifacts is performed by matching the user’s query
vector against existing HPSs. A matching function takes service metadata as
input, either automatically extracted keywords or, again tagged information.
Hence, tagging information is not only used during collaboration, but also
at design time. In contrast to above mentioned activity tags, service tags
express how HPSs are used for collaborations (i.e., for actual interactions).

3. The next step is the ranking of HPSs. We compare a user’s activities with
the expertise of those HPSs matching the demanded set of keywords.

4. The user can create new models, publish related artifacts and type defini-
tions using tools discussed in Section 4, or reuse existing HPS definitions.
The model defines human activities which are mapped into actions (cf. [6])
performed using Web services.

5. Finally, Personal Services (the mapping of user profiles to services) are pub-
lished in the HPS registry.

3 Overview HPS Framework

To enable HPS, we need a framework supporting the management of related
artifacts, user profiles, and HPS interactions. The HPS framework has been
developed for this purpose (cf. [2]). However, in this paper we focus on design
related APIs and components which have been implemented on-top of the core
framework. In the following, we provide a description of components in Fig. 2.

On Supporting the Design of Human-Provided Services in SOA 95

HPS FS HAL HPS Lookup

API Layer

Forms API

Design

Collections (XML DB)

HPS Framework

Middleware Layer

WSDL API
XSD

Transformer

HPS Ranking

Runtime
HPS Des ign

Interfaces
and Message

Fo rm ats

Publ icat ion
of Design
Art i facts

Providing
Serv ice

Publ icat ion
of Interfaces

Interact ions

Tag
Management

Service

Activity
Modelling

Designer
Tools

Model
Processor

Activity
Management

User
Management

Interface
Emitter

Service Registry

Fig. 2. HPS framework and architecture

The API Layer includes the core services for WSDL document generation
(WSDL API service) which specify human activities and user specified inter-
face elements (parameters and complex elements), the Forms API implement-
ing support for XML Forms (XForms2), an XSD Transformer service utilizing
the Forms API to automatically generate XForms based on XML schema def-
initions, for example, as defined in WSDL documents, and a Tag Management
service associating tags with HPS artifacts (activities, actions, and WSDLs).

Design: Fig. 2 shows the design flow on the left side (top down) starting with
HPS Design – designer tools such as a Web portal allowing users to create service
interfaces in a simple manner.

1. Interface and Message Formats: the HPS framework provides tools to au-
tomatically translate high level specifications (e.g., activities and interface
elements) into low level service descriptions without requiring the user to
understand underlying technologies such as XML or WSDL.

2. Publication of Design Artifacts: artifacts such as message formats and ac-
tivity type definitions are saved in XML collections.

Runtime: The User Management service holds user-related data such as profiles
and contact details and is utilized by the Activity Management service. The
Interface Emitter generates HPS interfaces depending on application scenario,
for example, human interactions using HPS or human interactions in processes.

4 HPS Interface Transformation and Generation

The design process and methodology presented in this paper has to be supported
by a set of tools and models. We start with the definition of the process, which
2 W3C Markup Forms: http://www.w3.org/MarkUp/Forms/

96 D. Schall et al.

allows users to define services without having to understand Web services tech-
nologies (depicted in Fig.3). Several papers focus on automatic GUI generation
based on WSDL descriptions [7,8]. However, these works assume that the WSDL
description of a service already exists and simply needs to be parsed and mapped
into some GUI language/representation.

4.1 Design Process

We define a process allowing users to create an activity model serving as the input
for automatic generation of service artifacts. The HPS framework provides User
Controls and a corresponding Meta Model which enable people to design their
Activity Model and HPS Interfaces. We discuss interface mappings and the meta
model in Sec. 4.2.

User
defines

uses

bind
User Control

Meta Model

XML
Schema

HPS
Interface

Interface
Emitter UI Generator

Service
Description

(WSDL Interface)

Activity
Model

Defines schema
binding and enables

model checking

Service
Model

Serves as input
for HAL
interactions

WSDL
Mapping

Human activity to
service mapping

Instance
Model

Defines SOAP
model for XML

instance

Transformation
Model

(XSD XForms Binding)

(1) User input in design (2) Transformations (3) Automated interface generation enabling interactions

Fig. 3. Conceptual approach and interface design

Step 1 in the design: users define their Activity Model using controls (a simple
example is shown in Fig. 5).

Step 2 comprises automatic transformations of the user’s input into XML arti-
facts: i) invoke the XSD Transformer translating the activity model into XML
schemes (i.e., Schema Binding) using definitions and constraints defined in the
Meta Model. An example of such constraints and mappings is given in Table 1.
Currently we express model mappings in XML schemes. ii) HPS Interfaces are
created by associating activity types with the Service Model, defining how ac-
tivity types (and human actions) are mapped into services definitions (WSDL).
The mapping of an HPS Interface into WSDL is the binding of activity type
definitions and actions with the HPS Access Layer (HAL, see [1]). At run-time,
HAL acts as a proxy service dispatching requests by performing security checks,
routing, message transformations (if needed), and persistency management of
messages (i.e., saving request/response messages in XML collections).

Step 3 comprises the automated generation of interfaces at run-time. The Inter-
face Emitter generates: i) interfaces allowing processes to interact with HPSs by
generating WSDLs. Thus, HPSs may be included in (software) process by defin-
ing human activities in the process definition, which are enacted as HPS actions

On Supporting the Design of Human-Provided Services in SOA 97

Table 1. Excerpt interface mapping

Model & Binding Description

XSD <xs:choice/>

Form <xf:select1 ref="" appearance="$model"/> with appearance
as $model parameter (“full” or “compact”)

Restriction/Model //*[@value=’Choice’]/prop[@name=’type’]/@value and
<xs:choice minOccurs="$model" maxOccurs="$model"> with
$model as parameters (minOccurs and maxOccurs being ”1”)

(interaction through HAL). GUIs are generated automatically by transforming
WSDLs and XSDs into XML forms using the Forms API.

4.2 Interface Mappings

Meta Models define interface mappings of XML schemes into XForms. Table 1
shows an exemplary mapping of an XML type into an XForms representation,
i.e., (1) XSD type, (2) Form model, and (3) mappings and Restriction/Model
as defined in the meta-model.

The above mappings support transformations into a forms representations. We
continue our discussion of HPS interfaces by showing a concrete XML example
of a WSDL description. We start with type definitions in Listing 1.

Of course, no user input is needed for mapping activities onto services or to
create WSDL descriptions. This is automatically performed by services in the
framework. Listing 1 shows GenericResource, ReviewRequest type definitions.

Listing 1. Review-activity types example.
<xsd:schema targetNamespace="http://services.myhps.org/reviewservice">

<xsd:complexType name="GenericResource">

<xsd:sequence>

<xsd:element name="Location" type="xsd:anyURI" />

<xsd:element name="Expires" type="xsd:dateTime" />

<xsd:sequence>

</xsd:complexType>

<xsd:element name="ReviewRequest" type="Request" />

<xsd:complexType name="Request">

<xsd:sequence>

<xsd:element name="ReviewResource" type="GenericResource" />

<xsd:element name="Comments" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

<xsd:element name="AckReviewRequest" type="xsd:string" />

<xsd:element name="GetReviewReply" type="xsd:string" />

<xsd:element name="ReviewReply" type="Reply" />

</xsd:schema>

98 D. Schall et al.

Such definitions can be created using tools, as we shall discuss later. In this
simplified example, the activity to be performed by a human is review compris-
ing resources, the actual request, and the reply, which is complex XML data
structure (abbreviated in this example).

Finally, Listing 2 shows an excerpt of a WSDL representing a review HPS.

Listing 2. HPS WSDL example.
<wsdl:message name="GetReview">

<wsdl:part name="part1" element="ReviewRequest" />

</wsdl:message>

<wsdl:message name="AckReviewRequest">

<wsdl:part name="part1" element="AckReviewRequest" />

</wsdl:message>

<wsdl:portType name="HPSReviewPortType">

<wsdl:operation name="GetReview">

<wsdl:input xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

message="GetReview" wsaw:Action="urn:GetReview" >

</wsdl:input>

<wsdl:output message="AckReviewRequest" />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="HALSOAPBinding" type="HPSReviewPortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />

</wsdl:binding>

Notice, PortType (i.e., the interface) for all interactions is the HPS access
layer. At run-time, the access layer extracts and routes messages to the demanded
HPS. Since every interaction is entirely asynchronous, interactions (session) iden-
tifier are automatically generated by the access layer (e.g., AckReviewRequest).

5 Recommendations for HPS Design

In the spirit of collaborative tagging systems, we perform ranking and recom-
mendations based on tagged resources. An entry is a triple (user, resource,
{tags}). We perform matching of relevant users who provide a particular HPS
of interest. The matching function is based on applied tags. To obtain rankings,
we measure the similarity of the user’s preferences with activities and actions
of matching users, i.e., those users already offering HPSs to find definitions of
services that can be reused.

Algorithm 1 outlines our ranking approach. We assume several functions. For
example, we calculate the similarity of preferences/activities as the Pearson corre-
lation coefficient. Furthermore, we calculate the frequency of tags using additive
smoothing, a simple yet effect method to account for missing/misplaced tags.

On Supporting the Design of Human-Provided Services in SOA 99

Algorithm 1. Recommendation algorithm comparing the preferences of a per-
son v searching for existing HPSs and artifacts.
Require: Utag is a set of users that applied the demanded set of tags. S is a vector

holding the scores of services by users ∈ Utag with similar interests.
Require: We determine the correlation between users as:

correl(u1, u2) =
∑

(u1 − u2)(u1 − u2)/(N ∗ stdev(u1)stdev(u2))
1: for each user u ∈ U do
2: for each tag ∈ AT do
3: /* Get the frequency for a specific tag used by u. */
4: Ω[tag]← getFrequency(u, tag)
5: end for
6: /* Assign the weight using the smoothing factor 0 < γ < 1. */

7: w(u,tag) ← Ω[tag]+γ∑

ftag∈Ω

ftag + γ

8: /* If any of u’s interactions/HPSs contain tag. */
9: Add u to Utag

10: end for
11: for each user u ∈ Utag do
12: /* Calculate correlation between u and v. */
13: φ← correl(wu, wv)
14: S[u]← p(u) ∗ score(φ)
15: /* p(u) is personalization vector to assign additional preferences. */
16: end for
17: /* Sort preferred users by decreasing score and truncate S. */
18: return the top-k list of services by users

The input of Algorithm 1 is a query vector and the preferences of the user ini-
tiating the design process. By matching existing HPSs, we determine the initial
set Utag. We determine the score of a particular user by mapping the correlation
factor φ into a linear function score(φ) = φ+1

2 since (−1 ≤ φ ≤ 1) would give us
negative scores if there is no correlation between users. Additional personaliza-
tion can be performed by assigning preferences (i.e., p(u)) for particular users.
The output of the recommendation algorithm is a ranked list of services S.

6 Implementation

In this section we show the tools to manage HPSs, artifacts, etc. supporting
lookup of services. The first tool illustrates how a user can search for existing
services. The first screenshot in Fig. 4 shows the result of a user query. In this
example we show the same HPS WSDL as discussed in previous sections (Sec.
4.2). If none of the existing HPSs fits the desired activities, users have the ability
to create new artifacts and activities which are then mapped into HPSs.

The framework provides a set of designer tools which can be used to define
control elements, options, and definitions of artifacts. A screenshot of a control is
given in Fig. 5, allowing users to define complex data structures. This tool is used

100 D. Schall et al.

Fig. 4. Registry maintaining HPSs and service artifacts: users can search for services,
which are displayed in a ranked list

Fig. 5. Example control allowing users to define activities and complex data structures

in Step 1 as defined by the design process in Sec. 4.1. The prototype version of
this tools automatically translated user input into low-level XML artifacts such
as schemes, instance documents (e.g., encapsulated in SOAP envelopes), WSDL
descriptions and XML forms depending on the HPS use case. For example, in-
teractions between humans in collaborations or using HPS in a process-centric
scenario. Show as XML (for demo purposes) translates user defined elements into
XML schemes, Show as XML Instance displays the associated XML schema in-
stance document, and Preview as Form renders XForm presentation.

7 Related Work

The work presented in this paper focuses on a methodology and tools allowing
humans to define service for various collaborations. We structure our discussion

On Supporting the Design of Human-Provided Services in SOA 101

into related work in the area of SOA, Web services, and process-centric collabora-
tion. Second, we present related research in engineering methods in SOA. Third,
we discuss tagging mechanisms and approaches for resource recommendations.

BPEL4People Task Model: BPEL4People defines human interactions in busi-
ness processes via the human task specification [4]. A concrete implementation
of BPEL4People as a service has been introduced in [9], but without supporting
the design of services. In [10], the relation of various Web standards and resource
patterns is discussed.

In contrast to above mentioned work, we describe a design approach allowing
people to define services. While BPEL4People defines how developers can define
human interactions in processes, related BPEL4People specifications do not de-
scribe how humans define services and how people manage interactions in SOA.
The difference between the task model, such as defined by BPEL4People, and
HPS is that tasks are usually defined for controlling interactions (e.g., start, end,
deadline, etc.). HPS targets collaboration scenarios where users contribute their
skills and expertise as services. Another point is that HPS reflects the compos-
able nature of the Web, for example, reusing and composing services. However,
we have not yet addressed compositions of HPSs.

Approaches for Interface Transformations and Generation: Our frame-
work utilizes open standards such as WSDL, to describe HPS interfaces, and
XForms to automatically generate user interfaces. GUI generation and mappings
for WSDL has been presented in [7,8] and forms generators such as IBM’s XML
Forms Generator3 for the Eclipse environment are available. In this paper we not
only focus on generating GUIs based on WSDL, but also the mapping of human
activities into HPS interfaces and generation of presentations (WSDL or XForms).

Tagging and Resource Recommendations: Recently, models for collabora-
tive tagging have been presented [11] and personalized recommendations-based
tagging models introduced in [12]. In [13], the authors present an evaluation
of tag recommendations in folksonomies using collaborative filtering methods
and an algorithm called FolkRank. Similarly, we follow a tag-based recommen-
dation approach. However, we propose activity tagging to express expertise of
users. Based on these tags, we implemented a collaborative filtering algorithm
for recommendation of HPSs.

8 Conclusion and Future Work

The methodology and tools presented in this work offer support in the design of
HPSs for users without having to implement code. The framework hosts a Web 2.0
portal, implemented in ASP.NET AJAX and C# APIs, allowing users to search
for service artifacts (interfaces already provided by other users) and to design new
services. The next steps include further implementation of XForm specifications
and deployment of a rendering run-time on mobile devices. Also, we are working
on composition aspects of HPSs and usability improvements of user tools.
3 http://www.alphaworks.ibm.com/tech/xfg

102 D. Schall et al.

References

1. Schall, D., Truong, H.L., Dustdar, S.: Unifying Human and Software Services in
Web-Scale Collaborations. IEEE Internet Computing 12(3), 62–68 (2008)

2. Schall, D., Truong, H.L., Dustdar, S.: The Human-provided Services Framework.
In: IEEE 2008 Conference on Enterprise Computing, E-Commerce and E-Services
(EEE 2008), Crystal City, Washington, D.C., USA. IEEE Computer Society, Los
Alamitos (2008)

3. Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M., König,
D., Leymann, F., Müller, R., Pfau, G., Plösser, K., Rangaswamy, R., Rickayzen,
A., Rowley, M., Schmidt, P., Trickovic, I., Yiu, A., Zeller, M.: WS-BPEL Extension
for People (BPEL4People), Version 1.0 (2007)

4. Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M., König, D., Leymann,
F., Müller, R., Pfau, G., Plösser, K., Rangaswamy, R., Rickayzen, A., Rowley, M.,
Schmidt, P., Trickovic, I., Yiu, A., Zeller, M.: Web Services Human Task (WS-
HumanTask), Version 1.0 (2007)

5. Golder, S., Huberman, B.A.: Usage patterns of collaborative tagging systems. Jour-
nal of Information Science 32(2), 198–208 (2006)

6. Dustdar, S.: Caramba a process-aware collaboration system supporting ad hoc and
collaborative processes in virtual teams. Distrib. Parallel Databases 15(1), 45–66
(2004)

7. Song, K., Lee, K.H.: An Automated Generation of XForms Interfaces for Web Ser-
vices. Web Services. In: Song, K., Lee, K.H. (eds.) IEEE International Conference
on ICWS 2007, pp. 856–863, July 9-13 (2007)

8. Kassoff, M., Kato, D., Mohsin, W.: Creating GUIs for Web Services. IEEE Internet
Computing 07(5), 66–73 (2003)

9. Thomas, J., Paci, F., Bertino, E., Eugster, P.: User Tasks and Access Control over
Web Services. In: Int. conf. on Web Services (ICWS 2007), Salt Lake City, USA,
pp. 60–69. IEEE Computer Society, Los Alamitos (2007)

10. Russell, N., Van Der Aalst, W.M.P.: Evaluation of the bpel4people and ws-
humantask extensions to ws-bpel 2.0 using the workflow resource patterns. Tech-
nical report, BPM Center Brisbane/Eindhoven (2007)

11. Cattuto, C., Loreto, V., Pietronero, L.: Semiotic dynamics and collaborative tag-
ging. PNAS 104(5), 1461–1464 (2007)

12. Byde, A., Wan, H., Cayzer, S.: Personalized tag recommendations via tagging and
content-based similarity metrics. In: Proceedings of the International Conference
on Weblogs and Social Media (2007)

13. Jäschke, R., Marinho, L.B., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag
recommendations in folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras,
R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS, vol. 4702,
pp. 506–514. Springer, Heidelberg (2007)

	On Supporting the Design of Human-Provided Services in SOA
	Introduction
	Collaboratively Designing HPS
	Overview HPS Framework
	HPS Interface Transformation and Generation
	Design Process
	Interface Mappings

	Recommendations for HPS Design
	Implementation
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

