
Distrib Parallel Databases
DOI 10.1007/s10619-011-7081-z

A human-centric runtime framework
for mixed service-oriented systems

Daniel Schall

© Springer Science+Business Media, LLC 2011

Abstract A wide range of Web-based tools and socially-enhanced collaboration ser-
vices have changed models of work. In today’s collaboration systems, interactions
typically span a number of people and services to work on joint tasks or to solve
emerging problems. Finding the right collaboration partner in Web-based interac-
tions remains challenging due to scale and the temporary nature of collaborations.
We argue that humans need different ways to indicate their availability and desire
to join collaborations. In this work, we discuss collaboration scenarios where peo-
ple define services based on their dynamically changing skills and expertise by using
Human-Provided Services. This approach is motivated by the need to support novel
service-oriented applications in emerging crowdsourcing environments. In such open
and dynamic environments, user participation is often driven by intrinsic incentives
and actors properties such as reputation. We present a framework enabling users to
define personal services to cope with complex interactions. We focus on the discovery
and provisioning of human expertise in service-oriented environments.

Keywords Human provided services · Mixed service-oriented systems ·
Crowdsourcing · Social computing

1 Introduction

The collaboration landscape has changed dramatically over the last few years by al-
lowing users to shape the Web and availability of information. In the past collabo-
rations were bound to, for example, intra-organizational collaborations using a com-
pany’s specific platform. It is now possible to utilize the knowledge of millions of

Communicated by Wil van der Aalst.

This work is supported by the European Union through the IP project COIN (FP7-216256).

D. Schall (�)
Argentinierstrasse 8/184-1, 1040 Vienna, Austria
e-mail: schall@infosys.tuwien.ac.at

mailto:schall@infosys.tuwien.ac.at

Distrib Parallel Databases

people participating in interactions on the Web. Web services and service-oriented
architectures (SOA) are the ideal technical framework to automate interactions span-
ning people and services. However, the transformation of how people collaborate and
interact on the Web has been poorly leveraged in existing SOA. In SOA, composi-
tions are based on Web services following the loose coupling and dynamic discov-
ery paradigm. We argue that people should be able to define interaction interfaces
(services) following the same principles to avoid the need for parallel systems of
Software-Based Services (SBS) and Human-Provided Services (HPS) [32, 33]. We
discuss mixed service-oriented systems that are composed of both humans and soft-
ware services, interacting to perform certain activities. Here, user-provided services
are well-defined interfaces to interact with people. The problem is that current sys-
tems lack the notion of human capabilities in SOA. The challenge is to support the
user in providing services in open Web-based environments. HPSs can be discovered
in a manner similar to SBS. Following this approach, humans are able to offer HPSs
and manage interactions in dynamic collaboration environments.

Unlike traditional process-centric environments in SOA, we focus on flexible and
open collaboration scenarios. In this work, we present the following novel key con-
tributions:

– We present a motivating scenario for utilizing human capabilities described as
HPSs in flexible service-oriented crowdsourcing applications.

– People need to be able to be able to provide services and to manage interactions
in service-oriented systems. We present the HPS architecture and its core compo-
nents: a Middleware Layer providing features for managing data collections and
XML artifacts, the API Layer comprising services for user forms generation and
XSD transformations, a Runtime Layer enabling basic activity and user manage-
ment features as well as support for interactions using Web services technology.

– In open and dynamic environments, expertise profiles need to be maintained in an
automated manner to avoid outdated information. We introduce a context-sensitive
expertise ranking approach based on interaction mining techniques.

– We evaluate our approach by discussing results of our expertise mining approach.

This paper is organized as follows. We overview related work in the following
Sect. 2. We present a scenario in Sect. 3 to motivate the need for Human-Provided
Services in crowdsourcing environments. In Sect. 4, we present the HPS activity and
task model enabling dynamic interactions in service-oriented systems. In Sect. 5, we
discuss the Human-Provided Services architecture and framework. The discovery and
selection of HPS is strongly influenced by human expertise. Our expertise ranking
approach based on interaction mining techniques is presented in Sect. 6. Section 7
presents experiments and implementation details. We conclude the paper in Sect. 8.

2 Related work

We structure our discussion regarding related work in three topics: (i) crowdsourc-
ing to clearly motivate the problem context of our work, (ii) interaction modeling
to overview different techniques for structuring collaborations, and (iii) metrics and
expertise mining to track user interest and skills in open Web-based platforms. Our

Distrib Parallel Databases

work is specifically based on the assumption that evolving skills and expertise in-
fluence how interactions are performed (for example, delegations) in crowdsourcing
environments.

Crowdsourcing In recent years, there has been a growing interest in the complex
‘connectedness’ of today’s society. Phenomena in our online-society involve net-
works, incentives, and the aggregate behavior of groups [11]. Human computation
is motivated by the need to outsource certain steps in a computational process to
humans [13]. An application of human computation in genetic algorithms was pre-
sented in [19]. A variant of human computation called games that matter was intro-
duced by [40]. Related to human computation are systems such as Amazon Mechan-
ical Turk1 (MTurk). MTurk is a Web-based, task-centric platform. Users can publish,
claim, and process tasks. For example [38], evaluated the task properties of a similar
platform in cases where large amounts of data are reviewed by humans. In contrast to
common question/answer (Q/A) forums, for example Yahoo! Answers2, MTurk en-
ables businesses to access the manpower of thousands of people using a Web services
API. Mixed service-oriented systems target flexible interactions and compositions of
Human-Provided and Software-Based Services [32]. This approach is aligned with
the vision of the Web 2.0, where people can actively contribute services. In such net-
works, humans may participate and provide services in a uniform way by using the
HPS framework [28]. A similar vision is shared by [25] who defines emergent collec-
tives which are networks of interlinked valued nodes (services). In such collectives,
there is an easy way to add nodes by distributed actors so that the network will scale.
Current crowdsourcing platforms do not support complex interactions (e.g., delega-
tion flows) that require joint capabilities of human and software services.

Questions include: how can people control flexible interaction flows in emerging
crowdsourcing environments?

Interaction modeling In business processes (typically closed environments), hu-
man-based process activities and human tasks can be modeled in a standardized
service-oriented manner. WS-HumanTask (WS-HT) [4] and BPEL4People (B4P) [3]
are related industry standards released to address the need for human involvement
in service-oriented systems. These standards and related efforts specify languages to
model human interactions in BPEL [3], the lifecycle of humans tasks [4] in SOA, re-
source patterns [27], and role-based access models [21]. A concrete implementation
of B4P as a service was introduced in [39]. A top-down approach, however, demands
for the precise definition of roles and interactions between humans and services. The
application of such models is therefore limited in crowdsourcing scenarios due to
the complexity of human tasks, people’s individual understanding, and unpredictable
events. Other approaches focus on ad-hoc workflows [10], self-contained subpro-
cesses (worklets) [1] based on activity theory, and task-adaptation [12] to cope with
changing environmental conditions. In [22], business activity patterns were intro-
duced to design flexible applications.

1Amazon Mechanical Turk: http://www.mturk.com/.
2Yahoo! Answers: http://answers.yahoo.com/.

http://www.mturk.com/
http://answers.yahoo.com/

Distrib Parallel Databases

Questions include: how can one control interactions in open and dynamic environ-
ments that are governed by the emergence of social preferences, skills and reputation?

Metrics and expertise mining Human tasks metrics in workflow management sys-
tem have been discussed in [20]. A formal approach to modeling and measuring
inconsistencies and deviations, generalized for human-centered systems, was pre-
sented in [8]. Studies on distributed teams focus on human performance and interac-
tions [5, 24], as well as in Enterprise 2.0 environments [7]. Models and algorithms
to determine the expertise of users are important in future service-oriented environ-
ments. Task-based platforms allow users to share their expertise [42]; or users offer
their expertise by helping other users in forums or answer communities [2]. By an-
alyzing email conversations [9], the authors studied graph-based algorithms such as
Hyperlink-Induced Topic Search (HITS) [18] and PageRank [23] to estimate the ex-
pertise of users. The authors in [35] used a graph-entropy model to measure the im-
portance of users. The work by [43] applied HITS as well as PageRank in online com-
munities (i.e., a Java Q/A forum). Approaches for calculating personalized PageRank
scores were introduced in [15, 16] to enable topic-sensitive queries in search engines,
but have not been applied to interaction analysis (social networks). Most existing
link-based expertise mining techniques do not consider information related to the
interaction context.

Questions include: how can interaction mining algorithms track users’ expertise,
interest, and skills in an automated manner considering context information?

3 Crowdsourcing

3.1 Overview

The shift toward the Web 2.0 allows people to write blogs about their activities, share
knowledge in forums, write Wiki pages, and utilize social platforms to stay in touch
with other people. Task-based platforms for human computation and crowdsourcing,
including CrowdFlower3, Google’s Smartsheet4, or Yahoo’s Predictalot5 enable ac-
cess to the manpower of thousands of people on demand by creating human-tasks
that are processed by the crowd. Human-tasks include activities such as designing,
creating, and testing products, voting for best results, or organizing information. The
notion of crowdsourcing describes an online, distributed problem solving and produc-
tion model with increasingly interested business parties in the last couple of years [6].
One of the main motivations to outsource activities to a crowd is the potentially con-
siderable spectrum of returned solutions. Furthermore, competition within the crowd
ensures a certain level of quality. According to [41], there are two dimensions in ex-
isting crowdsourcing platforms. The first categorizes the function of the platform.
Currently these can be divided in communities (i) specialized on novel designs and
innovative ideas, (ii) dealing with code development and testing, (iii) supporting mar-
keting and sales strategies, and (iv) providing knowledge support. Another dimension

3CrowdFlower: http://crowdflower.com/.
4Smartsheet: http://www.smartsheet.com/.
5Predictalot: http://pulse.yahoo.com/y/apps/vU1ZXa5g/.

http://crowdflower.com/
http://www.smartsheet.com/
http://pulse.yahoo.com/y/apps/vU1ZXa5g/

Distrib Parallel Databases

Fig. 1 Utilizing crowdsourcing in process flows

describes the crowdsourcing mode. Community brokers assemble a crowd accord-
ing to the offered knowledge and abilities that bid for activities. Purely competition
based crowdsourcing platforms operate without brokers in between. Depending on
the platform, incentives for participation in the crowd are either monetary or sim-
ple credit-oriented. Even if crowdsourcing seems convenient and attracts enterprises
with scalable workforce and multilateral expertise, the challenges of crowdsourcing
are a direct implication of human’s ad-hoc, unpredictable behavior and a variety of
interaction patterns.

3.2 SOA for crowdsourcing

Service-oriented architecture (SOA) is an emerging paradigm to realize extensible
large-scale systems. As interactions and compositions spanning multiple enterprises
become increasingly commonplace, organizational boundaries appear to be dimin-
ishing in future service-oriented systems. In such open and flexible enterprise en-
vironments, people contribute their capabilities in a service-oriented manner. We
consider mixed service-oriented systems based on two elementary building blocks:
(i) Software-Based Services, which are fully automated services and (ii) Human-
Provided Services [32] for interfacing with people in a flexible service-oriented man-
ner. Here we discuss service-oriented environments wherein services can be added at
any point in time. Following the open world assumption, humans actively shape the
availability of HPSs by creating services. Interactions between HPSs are performed
by using Web service-based technology (XML-based SOAP messages).

A motivating scenario for discovering members of the crowd in process-centric
flows is depicted in Fig. 1. The Process Flow (PFL) may be composed of single tasks
that are either processed by corresponding Web services or are assigned to responsi-
ble persons. In this scenario, a task (task-D) may be outsourced to the crowd. This
is done by preparing a request for support (RFS) containing various artifacts to be

Distrib Parallel Databases

processed by the crowd and additional metadata such as time constraints and com-
plexity of the task. The first step in a mixed service-oriented systems is to discover
and select a suitable HPS. Discovery and selection is based on both, matching of
functional capabilities (the service interface) and non-functional characteristics such
as the degree of human expertise. In the depicted case, the actor u has been selected
as the responsible service for processing the given request. The selection is based on
u’s expertise (visualized by the size of the node in the network), which is influenced
by u’s gradually evolving expertise and dynamically changing interests. The novelty
of our approach is that members of the crowd may also interact with each other by,
for example, simply delegating requests to other members (e.g., member u delegates
the request to the peer w) or by splitting the request into sub-tasks that are assigned to
multiple neighboring peers in the network. In our approach, the discovery of neigh-
bors is based on the social structure of networks (e.g., friend or buddy lists). How
decisions within the crowd are made (delegation or split of tasks) emerges over time
due to changing interaction preferences and evolving capabilities of people (depicted
as expertise areas). These dynamic interactions are defined as Crowd Flow (CFL).
Flexible interaction models allow for the natural evolution of communities based on
skills and interest. Our expertise mining approach and techniques help to address
flexible interactions in crowdsourcing scenarios.

4 HPS interaction model

The availability of interaction models in open, Web-based platforms such as the mo-
tivating crowdsourcing scenario is currently limited. Most existing crowdsourcing
platforms do not support interactions and collaborations between users (tasks are typ-
ically assigned to individuals). Other Web-based tools (e.g., bulletin boards, email, in-
stant messaging) lack the ability to compose the capabilities of human- and software-
based services, which typically requires standardized (XML-based) message formats,
interfaces, etc. The main purpose of the proposed interaction model is:

1. Provisioning of human expertise in a service-oriented manner using SOA prin-
ciples (Sect. 4.1). Examples are ‘document review’ [32] or ‘document transla-
tion’ [34] services provided by human actors.

2. Model to support flexible interactions between crowd members (Sect. 4.2).
3. Task model that can be used to link PFL artifacts (task descriptions) to flexible

crowd-activities which are provisioned through HPS (Sect. 4.3).

4.1 HPS activity model

Activities are used for different purposes. People use activities to structure collabo-
rations in a flexible manner. Also, activities enable users to define Human-Provided
Services. We now turn to the activity model enabling the use of HPS in various in-
teraction scenarios, for example CFLs. The presented activity model in Fig. 2 depicts
the most important elements to support basic interaction scenarios.

– An ActivityDeclaration defines the name and description of an activity, URI, and
a set of tags that can be applied to the declaration. Tags are applied by users to
associate keywords to declarations.

Distrib Parallel Databases

Fig. 2 Overview of HPS activity model

– The HPS Interface relates to an ActivityDeclaration. Name in the HPSInterface
depicts the HPSs name, for example, a review service. The HPSInterface (descrip-
tion) is very similar to the description of conventional SBS. We perform a simple
mapping to depict declarations as Web service descriptions (e.g., using WSDL).

– An HPSGroup defines the set of people providing a certain type of service es-
tablished as the relation between User, HPSInterface, and HPSGroup. An HPS
requester can be a human seeking the opinion of experts or a composed software
service (PFL) requiring human input. A ranking procedure must be used to select
the best available HPS. We term the relation between User and HPSInterface per-
sonal service, which is technically an instance of an HPS. Each user has a Profile
identifying people and storing user preferences.

– A Resource is used for different purposes. As mentioned before, HPSInterfaces are
depicted using languages such as WSDL. Thus, the interface is an XML document
that can be modified by using resource identifiers (URIs) to retrieve or update
resources. Other resources are type definitions, for example, activity types and/or
parts of complex data types.

– A GenericResource is a special type of Resource, which we use to wrap Artifacts.
Artifacts include collaboration documents and all sorts of files that are used and
created during collaborations. The GenericResource defines metadata associated
with Artifacts.

– The Action concept is used to interact with HPSs in the scope of an activity. The
HPSInterface is composed of a set of Actions. Notice, there are different action
concepts in our model. On the one hand, Action, as discussed here, is defined by
the user in the scope of an HPSInterface. The definition of an Action is done at
design time.

– The HPSPort depicts the technical—in a Web services sense—realization of an
HPS interface. (The details are not needed at this point and will be discussed in
the HPS framework section.) The HPSPort relates to a set of resources (e.g., typed
messages), which are used in certain Actions.

Distrib Parallel Databases

Fig. 3 Excerpt of hierarchical activity model

The previous concepts were introduced as models to depict and design HPSs. The
following concepts describe activity and HPS-centric interactions at run-time.

– An ActivityInstance represents an actual work item. An activity can be performed
many times, which are called instances of the activity. Each instance corresponds
to a declaration. Instances represent the context of interactions.

– An ActionInstance is connected to an ActivityInstance. Each ActionInstance is de-
fined by an Action. An Attachment is something generic to associate XML doc-
uments, for example, XML messages that are exchanged between services, and
other content-types with an ActionInstance. Attachments usually convey typed
messages that are defined in an HPSInterface and Resources.

Both ControlAction and ActionInstance are used at run-time. A ControlAction,
however, depicts common action types in human collaboration. ControlActions in-
clude coordination, communication, and execution actions that are associated with
instances of activities, for example delegations of activities. However, such actions
are not part of an HPSInterface.

A ControlAction is always used between two or more people to, for example,
coordinate the execution of activities; whereas an ActionInstance may be the result
of interactions between human and software services. Each action, ControlAction
as well as ActionInstance, is logged to keep a history of interactions. The Interac-
tionLog captures traces of interactions (activities and their actions) performed in
collaborations. Also, interactions between software services are logged to maintain
a history of the collaboration context.

4.2 Hierarchical activities

Activities can be structured as hierarchies (see Fig. 3) using parent and child rela-
tions. Child activities specify the details with respect to the (sub-)steps in collabora-
tions, for example, sub-activities in the scope of a parent activity. This allows for the
refinement of collaboration structures as the demand for a new set of activities (e.g.,
performed by different people and services) increases. The need for the dynamic re-
finement of collaboration structures is especially required when people have limited
experience (the history of performed activities) with respect to a given objective or
goal. Furthermore, some people tend to underestimate the scale and complexity of
an activity; thus the hierarchical model enables the segmentation of activities into
sub-activities, which can be, for example, delegated to other people.

Distrib Parallel Databases

Fig. 4 Overview task model

The basic HPS activity model (cf. Fig. 2) did not define any notion of activity hier-
archies because, currently, we do not support the mapping of activity hierarchies onto
HPSs. For example, hierarchically structured activities in activity declarations would
require a mapping of such hierarchies into a set of Actions. Activities have a relat-
edTo property which provides a mechanism to link to any other activity. Typically,
multiple members work on the same activity with different roles. The Involvemen-
tRole identifies the creator, observer, contributor, responsible, and supervisor of an
activity. Involved workers apply a set of GenericResources to perform their work. As
mentioned before, objects such as documents are represented as a shared Artifact.
A ControlAction captures activity-change events, interactions between members, and
work carried out. Actions can trigger events describing the progress of activities.

4.3 Task model

In most collaborations, activities need to be controlled by capturing temporal aspects
such as progress of activities and monitoring of deadlines. In this section, we define
an extended task model, which can be used in open collaboration scenarios; for exam-
ple, in HPS-based collaborations on the Web. Figure 4 shows task-related concepts
and their relation to previously introduced concepts.

Controlling the execution of activities The most fundamental aspect is to control the
execution of activities by associating a HumanTask with an ActivityInstance. Multiple
tasks can be created because activity instances can be divided into sub-activities.
A HumanTask is derived from a generic Task defining basic task-properties—StartAt,
DueAt, and, Priority. If tasks are used in HPS-based collaborations, requesters are
aware of the state of a given interaction (e.g., accepted, inprogress, or completed).
Based on these execution parameters, for example, the properties Priority and DueAt,
Notifications can be sent to a set of people. Examples include, notify a set of people
(PeopleGroup) about the status of an activity, escalate deviations in the execution
of activities, or notify the supervisor of an activity when the activity (or one of its
sub-activities) has been completed.

Distrib Parallel Databases

This model is well aligned with the WS-HumanTask (WS-HT) specification [4].
Moreover, functional properties can be associated with ActivityDeclarations, de-
picted as Requirement in Fig. 4; for example, role models controlling whether users
are allowed to work on activities. Again, a generic PeopleGroup is used which is pop-
ulated with a set of people depending on specified requirement. Notice, requirements
typically do not change over time. For example, if we use a role model to control the
set of people who can work on an activity, we follow a top-down view—modeling
how an activity should be performed. In contrast, constraints change over time de-
pending on the run-time context. Constraint are, for example, the minimum set of
skills or level of expertise a potential worker must have. Indeed, skills and level of
expertise change over time depending on performed activities.

Creating announcements The idea of the HPS model is not only to support en-
terprise collaboration scenarios but also Web-based collaborations. In enterprises,
a corporate directory usually holds all information regarding employees, their role
in the company, and additional contact information, which can be accessed to popu-
late a PeopleGroup. However, these announcements are well applicable to enterprise
collaborations as well because in global corporations it is impossible to maintain ex-
pertise, roles, interests of employees in a central directory.

Here we define two scenarios showing the usefulness of announcements:

– We can imagine a TaskDescription as an announcement to express the need for a set
of HPSs to work on tasks. The notion of task descriptions is similar to marketplaces
of work in task-based platforms on the Web, for example, Amazon’s Mechanical
Turk where Human Intelligence Tasks (HITs) are used for this purpose. See the re-
lation between TaskDescription, Resource, and PeopleGroup in Fig. 4. A Resource
describes an HPS as previously discussed in the basic HPS activity model.

Task descriptions comprise constraints such as task availability information (be-
ginning and expiration time of the task) and the number of available task instances
(how many of those tasks can be claimed by users). In this case, it is clear that a
particular type of HPS has to be used in the context of a task.

– The relation between ActivityDeclaration, TaskDescription, and Location depicts
the need for a service—potentially in a specific location area.

Therefore, these kind of announcements are opportunities for users to create
new HPSs or to associate an existing HPS with a description which has not been
considered before. Such announcements are different with respect to the previous
case (marketplace example) because ActivityDeclaration and TaskDescription do
not demand for a particular type of HPS.

4.4 Task execution model

The next step is to introduce a task execution model defining the possible task states.
The task execution model is depicted by Fig. 5. It is relevant for both cases, announce-
ments of task and the control of activity executions.

– Claiming Tasks: Announcements allow requesters to denote the availability of
work items (i.e., activities) without explicitly selecting a particular HPS. An-
nouncement can be generated if there is not any matching HPS available; or if

Distrib Parallel Databases

Fig. 5 HPS Task execution model

the demanded HPS is currently not provided by users. Initially, a task is set to
Available and becomes Unavailable when the announcement expires. Based on
announcements, tasks can be Claimed, Accepted or rejected by requesters (becom-
ing Available again).

– Task Assignments: A task can be Assigned to HPSs without issuing announce-
ments, specifically when software services generate tasks that need to be processed
based on, for example, deadlines. An Assigned task may go into the Accepted state,
otherwise to Aborted when the assignment procedure times out. For example, the
user is not responding to an assignment request.

The task state changes from Accepted to Initiated when an action is performed in
the context of an activity (e.g., sending a request to an HPS). The task changes its state
to Aborted if the initiation fails (Initiated state). The state Activated indicates that the
request is processed, followed by the Finished state or Failed if the HPS was unable
to deliver the desired output—the expected information, which can be validated by,
for example, a (human) requester reviewing the output. A task is successful if the
output of an HPS is Approved by the requester.

5 Architecture

Most systems based on SOA-principles (registration, discovery, and interaction) typ-
ically lack the notion of human capabilities that can be provisioned as service. Tra-
ditional service-oriented systems provide support for software-based services only.
We propose mixed service-oriented systems. Moreover, existing tools for designing
services usually require ‘expert’ knowledge in terms of understanding various WS-
standards. HPS harnesses human capabilities within service-oriented environments
while leveraging Web 2.0 innovations.

In addition, our architecture provides an approach for interaction monitoring that
captures the context of interactions through activity identifiers. Monitored interac-

Distrib Parallel Databases

Fig. 6 HPS framework and architecture

tions are logged and analyzed to calculate various metrics such as reputation and
interest profiles of users. The automatic calculation of reputation and skills through
mining is a novel technique to support the discovery of human capabilities in SOA
considering changing expertise and interests of people.

5.1 HPS framework

This section details the HPS framework by introducing various services to enable hu-
man interactions in SOA. The HPS platform allows requesters (people and software
services) to find and interact with HPSs. The framework offers a set of tools to sup-
port the design of HPSs and a middleware hosting various services such as the HPS
Access Layer (HAL). Figure 6 shows the main components of the HPS framework.
The arrows in the figure depict a ‘using’ relation between various blocks.

Design tools HPS Design tools allow users to create service interfaces (annota-
tion 1) in a simplified manner. These tools are hosted in a Web portal (see [28] for
details). Figure 6 illustrates the design flow:

– Interface and Message Formats: the HPS framework provides tools to automati-
cally translate high level specifications (e.g., activities and interface elements) into
low level service descriptions (annotation 2) without requiring the user to under-
stand underlying technologies such as XML or WSDL.

Distrib Parallel Databases

– Publication of Design Artifacts: artifacts such as message formats and activity
definitions are saved in XML collections (annotation 3).

API layer The framework includes services and tools for the design of HPS as well
as runtime support for the automatic generation of interfaces. The API Layer includes
the following core services:

– WSDL API service to generate service descriptions; in particular, to create WSDLs
based on human activities and user specified interface elements (parameters and
complex elements).

– Forms API implementing support for XML Forms (XForms).
– XSD Transformer service utilizing the Forms API to automatically generate

XForms based on XML schema definitions, for example, as defined in WSDL
documents.

– Tag Management service associating tags with HPS artifacts (activities, actions,
and WSDLs).

Runtime infrastructure services The following services have been designed and im-
plemented to enable HPS-based collaboration.

– The Activity Management service maintains activity declarations and activity in-
stances (annotation 4).

– The User Management service holds data related to profiles and contact details.
– The Interface Emitter generates HPS interfaces depending on the interaction sce-

nario (annotation 5); for example, interactions between humans or interactions re-
quiring WSDL interfaces (e.g., compositions of HPS and software services). Since
collaboration scenarios include enterprise collaborations, for example, Web-based
portals implementing rich user interfaces, and also mobile collaboration scenarios,
interface generation can be customized based on the user’s current context. There-
fore, based on the requirements and constraints of the current or preferred user
device, different interface representations can be generated.

Middleware layer The HPS FS is an XML based, distributed file system to manage
user profiles, human tasks, service related information such as WSDL descriptions,
and personal services (see also [31]). The HPS FS offers a set of APIs to manage
XML artifacts and collections via the Atom Protocol Model6 to retrieve and update
HPS related information. We embed HPS interfaces, described using WSDL, as el-
ements in Atom-based XML documents (see Atom Syndication Format7). Atom-
formatted representations contain HPS ‘information items’ with the advantage that
various Web 2.0 authoring tools and APIs can be used to retrieve and update Atom-
based elements. HPS information includes: (i) which services are registered with the
HPS framework, (ii) how to interact with services, (iii) the geographic location of ser-
vices; if location information is shared by the user, and (iv) other context information
of an HPS including the current availability of a particular service.

6Atom Protocol Model: http://tools.ietf.org/html/rfc5023.
7Atom Syndication: http://tools.ietf.org/html/rfc4287.

http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc4287

Distrib Parallel Databases

HAL dispatches and routes SOAP requests to the corresponding service. Thus,
humans and software services (i.e., HPS requesters) are able to interact with HPSs
by issuing requests toward the HPS middleware. HAL implements security features
to prevent unauthorized access and allows requests to be routed according to user-
defined rules (e.g., automatic delegations based on load-conditions [37]). The HPS
Ranking algorithms are used for the analyses of human and service interactions to
recommend the most suitable HPS based on various interaction and task metrics.
Ranking results and recommendations can be requested from a Expertise Ranking
service (annotation 6). The HPS Lookup supports various ways to discover HPSs.
Web browsers can be used to obtain a list of services as ‘news items’ embedded in
Atom elements. For example, the middleware implements a service which returns
XML documents as news feeds containing HPS-related information. We have im-
plemented this mechanism to support the integration of HPS with other Web 2.0
platforms. Also, a Web services-based API can be used to support typical lookup op-
erations to get a list of available services. The middleware hosts a Service Registry
that is used when the lookup is performed.

5.2 Data collections

The HPS framework utilizes Web services technology to enable HPS at the technical
level. Therefore, various XML-based collections and resources need to be managed
in an efficient manner. In HPS, XML-based collections are managed by the HPS FS.
Basic create, read, update, and delete (CRUD) operations can be performed on HPS-
related information. As mentioned before, the Atom protocol is used for this purpose.
Resources and collections include:

– User Profile and Metrics: Profiles contain hard and soft-facts. Hard-facts includes
information as found in resumes such as education, employment history including
organizational information and position held by the user, and professional activi-
ties. Soft-facts are represented as competencies. A competency consists of weights
(skill level of a user), classification (description of area or link to taxonomy), and
evidence (external sources acting as reference or recommendation). Soft-facts can
be generated by the middleware based on users’ activities to indicate expertise or
skill level. We use friend-of-a-friend (FOAF8) profiles to manage social networks
structures (e.g., buddy lists) and other user information.

– Service Registry: The registry maintains a number of XML documents describing
HPS. This information includes a set of service definitions, the list of available
services, and information regarding personal services. The term personal service
was introduced as a metaphor for a service instance. Service instance is a purely
technical term to denote the number of physically deployed services that have the
same (syntactic) interface characteristics.

– Task Registry: Manages human tasks that can be either public tasks (i.e., announce-
ments used to advertise the need for HPSs) or private tasks that are associated with
HPS-based interactions to control the status of collaborations. Public tasks are as-
sociated with an interaction upon claiming and processing tasks.

8FOAF: http://xmlns.com/foaf/spec/.

http://xmlns.com/foaf/spec/

Distrib Parallel Databases

5.3 Interactions and monitoring

The HPS framework dynamically generates interfaces for the discovery of services
and interactions with users. Next, we show a (simplified) WSDL-based interface de-
scription to realize HPS-based support services (as introduced in the crowdsourcing
scenario).

1 <? xml v e r s i o n ="1.0"?>
2 < w s d l : d e f i n i t i o n s name="SupportService" . . . >
3 < w s d l : t y p e s >
4 < xsd : schema t a r g e t N a m e s p a c e ="http://myhps.org/rfs">
5 < xsd :complexType name="GenericResource">
6 < x s d : s e q u e n c e >
7 < x s d : e l e m e n t name="Location" t y p e ="xsd:anyURI" / >
8 < x s d : e l e m e n t name="Expires" t y p e ="xsd:dateTime" / >
9 < x s d : s e q u e n c e >

10 < / xsd :complexType >
11 < xsd :complexType name="Request">
12 < x s d : s e q u e n c e >
13 < x s d : e l e m e n t name="SupportResource" t y p e ="GenericResource" / >
14 < x s d : e l e m e n t name="Comments" t y p e ="xsd:string" / >
15 < / x s d : s e q u e n c e >
16 < / xsd :complexType >
17 < !-- further types ... -->
18 < x s d : e l e m e n t name="SupportRequest" t y p e ="Request" / >
19 < x s d : e l e m e n t name="AckSupportRequest" t y p e ="xsd:string" / >
20 < x s d : e l e m e n t name="GetSupportReply" t y p e ="xsd:string" / >
21 < x s d : e l e m e n t name="SupportReply" t y p e ="Reply" / >
22 < / xsd : schema >
23 < w s d l : t y p e s >
24 < w s d l : m e s s a g e name="GetSupport">
25 < w s d l : p a r t name="part1" e l e m e n t ="SupportRequest" / >
26 < / w s d l : m e s s a g e >
27 < w s d l : m e s s a g e name="AckSupportRequest">
28 < w s d l : p a r t name="part1" e l e m e n t ="AckSupportRequest" / >
29 < / w s d l : m e s s a g e >
30 < !-- further messages ... -->
31 < w s d l : p o r t T y p e name="HPSSupportPortType">
32 < w s d l : o p e r a t i o n name="GetSupport">
33 < w s d l : i n p u t xmlns:wsaw="http://.../addressing/wsdl"
34 message="GetSupport" wsaw:Act ion="urn:GetSupport" >
35 < / w s d l : i n p u t >
36 < w s d l : o u t p u t message="AckSupportRequest" / >
37 < / w s d l : o p e r a t i o n >
38 < / w s d l : p o r t T y p e >
39 < w s d l : b i n d i n g name="HALSOAPBinding" t y p e ="HPSSupportPortType">
40 < s o a p : b i n d i n g s t y l e ="document"
41 t r a n s p o r t ="http://xmlsoap.org/soap/http" / >
42 < / w s d l : b i n d i n g >
43 < / w s d l : d e f i n i t i o n s >

Listing 1 HPS WSDL definition

Listing 1 shows a complete HPS WSDL example to support the discovery of HPS
interfaces. Lines 4–23 define XML type definitions including GenericResource
and SupportRequest. The user can create such definitions by using tools hosted
by the HPS platform. In this simplified example, the activity to be performed by a

Distrib Parallel Databases

human is the previously mentioned request for support (RFS) activity comprising
resources, the actual request, and the reply, which is a complex XML data structure
(abbreviated in this example). Lines 24–29 show an excerpt of WSDL messages.
However, we only show the request denoted as SupportRequest.

The HPSSupportPortType is described by lines 32–39. Notice, the HPS Ac-
cess Layer (HAL) dispatches all interactions. At run-time, HAL extracts and routes
messages to the demanded HPS. Since every interaction is entirely asynchronous,
interactions (session) identifier are automatically generated by HAL (e.g., Ack-
SupportRequest). Finally, lines 40–43 show the HALSOAPBinding of the
HPSSupportPortType.

1 <? xml v e r s i o n ="1.0"?>
2 < s o a p : E n v e l o p e x m l n s : s o a p ="http://www.w3.org/2001/12/soap-envelope"
3 xmlns :wsa ="http://schemas.xmlsoap.org/ws/2004/08/addressing"
4 x m l n s : h p s ="http://myhps.org/"
5 x m l n s : t y p e s ="http://myhps.org/types"
6 x m l n s : r f s ="http://myhps.org/rfs">
7 < s o a p : H e a d e r >
8 < t y p e s : t i m e s t a m p v a l u e ="2010-03-05" / >
9 < t y p e s : d e l e g a t i o n hops="3" d e a d l i n e ="2010-03-06" / >

10 < t y p e s : a c t i v i t y u r l ="http://www.coin-ip.eu/Activity#42" / >
11 <wsa:MessageID> uu id < / wsa:MessageID>
12 <wsa:From> h t t p : / / . . . / Ac to r # F l o r i a n < / wsa:From>
13 <wsa:ReplyTo> h t t p : / / . . . / Ac to r # F l o r i a n < / wsa:ReplyTo>
14 <wsa:To> h t t p : / / . . . / Ac to r # D a n i e l < / wsa:To>
15 < w s a : A c t i o n > h t t p : / / . . . / Type / RFS< / w s a : A c t i o n >
16 < / s o a p : H e a d e r >
17 <soap:Body >
18 < h p s : R e q u e s t >
19 < r f s : s u b j e c t >WSDL consumpt ion wi th Axis2 < / r f s : s u b j e c t >
20 < r f s : r e q u >Axis2 r e p o r t s a p a r s i n g e r r o r w h i l e consuming
21 t h e g i v e n r e s o u r c e . What i s wrong ?< / r f s : r e q u >
22 < r f s : c o m m e n t s >Used Axis2 1 . 4 < / r f s : c o m m e n t s >
23 < r f s : k e y w o r d s >WSDL, Axis2 < / r f s : k e y w o r d s >
24 < r f s : c a t e g o r y > S o f t w a r e / SE / G e n e r a l / SE f o r I n t e r n e t p r o j e c t s
25 < / r f s : c a t e g o r y >
26 < r f s : r e s o u r c e >
27 < !-- details omitted -->
28 < / r f s : r e s o u r c e >
29 < / h p s : R e q u e s t >
30 < / soap:Body >
31 < / s o a p : E n v e l o p e >

Listing 2 Simplified RFS via SOAP example

The HPS Access Layer logs each service interaction (request and response mes-
sage) through a logging service. RFSs and their responses, exchanged between
crowd members, are modeled as traditional SOAP calls, but with header extensions,
as shown in Listing 2. The most important SOAP-header extensions include: The
Timestamp captures the actual creation of the message and is used to calculate
temporal interaction metrics, such as the average response time. The tag Dele-
gation holds parameters that influence delegation behavior, such as the number
of subsequent delegations numHops (to avoid circulating RFSs) and deadlines.
The Activity uri describes the context of interactions that is based on the pre-
viously introduced activity model. The MessageID enables message correlation to

Distrib Parallel Databases

Fig. 7 Collaborative networks:
(a) Interactions are performed
between nodes in the network;
(b) Metadata and metrics are
associated with links between
nodes; (c) Context networks are
created based in link
information

match request/response pairs. WS-Addressing tags, besides MessageID, are used
to route RFSs through the crowd.

Interactions are periodically analyzed to calculate metrics such as reputation and
trust between community members. While the depicted architecture follows a central-
ized approach, the logging facilities are replicated for scalability reasons, and mon-
itoring takes place in a distributed form. Interactions are purged in predefined time
intervals, depending on the required depth of history needed by metric calculation
plugins (e.g., for trust inference [36]).

6 Expertise ranking

Evolving skills, interests and expertise need to be maintained in an automated manner
to avoid outdated profile information. Top-down approaches define interest and ex-
pertise areas using taxonomies and ontologies. Here we follow a interaction mining
approach that addresses inherent dynamics of flexible collaboration environments.

6.1 Context-sensitive interaction mining

Our expertise ranking approach is based on observed interactions (from logs) and
analysis of the structure and dynamics of interaction networks. Therefore, an interac-
tion network (see Fig. 7(a)) is modeled as a graph G = (N,E) composed of the set
of nodes N and the set of edges E. Note, here the terms edge and link have the same
meaning.

We argue that context information is essential for expertise mining. The context
of an interaction can be captured by, for example, extracting relevant keywords from
messages exchanged between users or by tags applied to various collaboration arti-
facts. In this work, we focus on tags (Fig. 7(b)) serving as input for contextual link
information. Interactions such as delegation requests are tagged with keywords. As
delegation receivers process tasks, our system is able to learn how well people cope
with certain tagged tasks; and therefore, able to determine their centers of expertise.
The profile P(u) = 〈fu(t1), fu(t2), fu(t3), . . . 〉 describes the frequencies fu of tags
T = {t1, t2, t3, . . . } that are applied in collaborations by and with u. Interaction met-
rics such as weights depicting the interest and focus of a user to collaborate with other
peers in a specific context are automatically calculated through mining. Figure 7(c)
shows networks for context C1 and C2. Each context network may have one or more
tags associated with it.

Distrib Parallel Databases

Fig. 8 Hubs in different personalized expert queries

Existing work in the area of expertise mining (e.g., [43]) typically focuses on a
graph representation as depicted by Fig. 7(a). In contrast, we present an approach
and algorithm that is suitable for scenarios as shown in Fig. 7(c). We base our exper-
tise mining algorithm on well proven and theoretically sound techniques (i.e., [18]
and [23]). Specifically, we take the notion of hubs and authorities as introduced by
Kleinberg [18] as a starting point to derive a context-sensitive expertise mining ap-
proach.

6.2 Hubs and authorities

The notion of authorities in social or collaborative networks can be interpreted as a
measure to estimate the relative standing or importance of individuals in social net-
works. Applying this idea in our crowdsourcing scenario (see Fig. 8), a member of
the Expert Crowd may receive an RFS and delegate work to some other peer in the
network (characterizing hubs in the network). For example (as depicted in Fig. 8),
u delegates the received RFS to w. Receivers of the delegated work, however, expect
RFSs fitting their skills and expertise (i.e., being an authority in the given domain).
Careless delegations of work will overload these peers resulting in degraded process-
ing time due to missing expertise.

Within the Expert Crowd, authorities give feedback using rating mechanism (e.g.,
a number on the scale from 1 to 5) to indicate their satisfaction; i.e., whether a partic-
ular hub distributes work according to their skills and interest. Thus, a ‘good hub’ is
characterized by a neighborhood of peers that are satisfied with received RFSs. Also,
delegation of work is strongly influenced by trust, for example, whether the initial
receiver of the RFS (hub within the Expert Crowd) expects that a peer will process
work in a reliable and timely manner. RFS receivers need to be trusted by influential
hubs that are highly rated to be recognized as authoritative peers in the Expert Crowd.

6.3 Personalized expert queries

Here we utilize the concept of personalized expert queries (as introduce in [30])
to discover expert hubs that are well-embedded9 in expertise networks given a par-
ticular query context. Delegation is important in flexible, interaction-based systems

9A hub is thereby characterized by the social network structure (node degree) and connection strength
(e.g., count of delegated or processed RFSs) based on joint collaborations.

Distrib Parallel Databases

because expert hubs typically attract a large amount of RFSs over time (due to their
distinguished expertise). From a network perspective, this means that hubs will be
‘bottlenecks’ due to the limited capacity and processing speed of the HPS. However,
being a hub in the Expert Crowd means that a person knows many other experts in
similar expertise areas. The main argument of our approach is that the likelihood of
a successful delegation of RFSs to other experts increases based on the hubness of
a person (embedding of a person in expert areas such as communities and interest
groups).

Let us start formalizing this concept. A personalized expert query QC is defined
as QC = (KW,W(kw)) where KW = {kw1, kw2, kw3, . . . } is the set of keywords or
terms determining the context C of a query. Each keyword kw may have a weight
associated with it depicted by W(kw). Consider the scenario in Fig. 8. First, a query
(see QA and QB) is specified either manually by a (human) expert seeker or derived
automatically from a given process context (PFL), for example a predefined rule de-
noting that a particular set of skills is needed to solve a problem. The purpose of a
query is to return a set of experts who can process RFSs, either by working on the
RFSs or delegation. Thus, QA would return HA as the user who is well-connected
to authorities in query context QA. Being well-connected means that HA has the
highest number of links and has performed interactions over these links (e.g., dele-
gations) that are relevant for a given query context. There are two influencing factors,
i.e., relations, determining hub- and authority scores: (i) how much hubs trust author-
ities (depicted as filled arrows from hubs to authorities) and (ii) ratings hubs receive
from authorities (open arrows to hubs). Trust mainly influences the potential number
of users (e.g., known by HA) who can process delegated RFSs. On the other hand,
receivers can associate ratings to RFSs to express their opinion whether the delegated
RFSs fit their expertise. QB may demand for a different set of skills. Thus, not only
matching of actors is influenced, but also the set of interactions and ratings consid-
ered for calculation expertise scores (i.e., only the set of RFSs and ratings relevant
for QB). Note, single interactions that lead to trust relations, as well as single rating
actions that lead to rating relations are not depicted by Fig. 8. A single arrow may in
fact depict a number of interactions or ratings.

6.4 Ranking model

One of the main pillars of our work is to consider the context in which interactions
take place. In our previous work we defined two independent expertise ranking ap-
proaches, one called DSARank [29] and the other approach called ExpertHITS [30].
Here we introduce a generalized ranking approach based on our previous discussions
on the concept of hubs and authorities in evolving Expert Crowds. The starting point
for our ranking algorithm is (1) (see [18, 30]).

H(u) =
∑

(u,v)∈E

A(v) A(v) =
∑

(u,v)∈E

H(u) (1)

The edge (u, v), which reads u knows v, is established based on links in the
social network (FOAF profiles). Notice, by ranking nodes in a graph G using this
method, each node n ∈ N receives both hub and authority scores. However, we are

Distrib Parallel Databases

Table 1 Interaction weights and related symbols

Symbol Description

w
Q
vu The link weight based on ratings given by v to RFSs received from u

w
Q
zv The connection strength of a hub z to authority v. Delegation behavior of hubs is based on the

success of interactions (successful completion of delegated task)

primarily interested in computing the hub importance H(u) of a particular node. This
is motivated by the need to find coordinators who distribute requests by delegating
tasks within the Expert Crowd [30] (emerging CFLs). However, we argue that an
expertise mining algorithm must consider a person’s interest and activity level in
a certain collaboration context. As proposed in [29], preferences that are based on
mining of interaction metrics can be used to compute contextual expertise profiles.

H(u;Q) = (1 − λh)p(u;Q) + λh

∑

(u,v)∈E

wQ
vuA(v;Q) (2)

Computing contextual expertise profiles is accomplished by expanding (1) in
terms of adding (1 − λh)p(u;Q) to the standard HITS model as shown in (2). The
parameter λh is used to balance between preferences p(u;Q) and the propagation of
global importance scores denoted by the term

∑
(u,v)∈E w

Q
vuA(v;Q). The link weight

wvu based on Q is discussed in Table 1. From the network point of view, the definition
in (2) can be interpreted as influence propagation based on a node’s outgoing links.
This is similar to TrustRank [14] where trust scores are propagated along neighboring
outlinks. TrustRank is based on an inverse PageRank model that utilizes good seeds
to influence trust flows. Also (2) permits a similar interpretation because H(u;Q) can
be computed as the inverse PageRank [14]. However, our approach closely follows
the personalized PageRank model [23] by assigning preferences to the personaliza-
tion vector p(u;Q) to create context-aware importance rankings.

Similarly, importance scores for authorities A(v;Q) are determined using (3):

A(v;Q) = (1 − λa)p(v;Q) + λa

∑

(z,v)∈E

wQ
zvH(z;Q) (3)

Without considering the dual nature of HITS (assigning hub and authority scores
to each node in the network), we can regard (3) as the personalized PageRank model
that is biased towards a particular interaction context using the contextual preference
vector p(v;Q). Again, the weight w

Q
zv is detailed in Table 1. Notice, (3) permits an

interpretation of delegation behavior within the Expert Crowd as a stochastic process
as hubs may choose to interact with known authorities or decide to pick a newcomer
for task delegation either randomly10 or based on, for example, interest similarities
(see also [36] for bootstrapping newcomers in collaborations).

10The probabilistic interpretation of PageRank is known as the random surfer model [23].

Distrib Parallel Databases

To create a unified equation for H(u;Q), we substitute A(v;Q)—as defined in
(3)—in (2) and define the hub importance of u as follows:

H(u;Q) = (1 − λh)p(u;Q) + λh(1 − λa)
∑

(u,v)∈E

wQ
vup(v;Q)

+ λhλa

∑

(u,v)∈E

∑

(z,v)∈E

wQ
vuw

Q
zvH(z;Q) (4)

Equation (4) provides the basic formalism to determine coordinators based on
contextual preferences. Next, we reformulate the context-sensitive personalization
vector p(u;Q) as follows (based on (4)):

p′(u;Q) = (1 − λh)

(1 − λa)
p(u;Q) + λh

∑

(u,v)∈E

wQ
vup(v;Q) (5)

Equation (5) essentially consists of two components: preferences given to a par-
ticular hub u, for example based on the PFL problem context, and how well u is rated
by authorities expressed by the weight w

Q
vu. The authority preference vector p(v;Q)

is personalized based on interaction dynamics captured by metrics such as the inter-
action intensity of v. We refer interested readers to [29] for a detailed description on
these metrics.

Here we focus on personalizing p′(u;Q) based on ratings to reduce the complex-
ity of preference parameters (i.e., determining p(u;Q)). By setting λh = 1 we have:

p′(u;Q) =
∑

(u,v)∈E

wQ
vup(v;Q) with λh = 1 (6)

Based on (4) and (6), let us define the following equation to estimate the hub
importance of a given network node u:

IH (u;T ′) = (1 − λ)p′(u;T ′) + λ
∑

(u,v)∈E

∑

(z,v)∈E

wT ′
vuw

T ′
zv IH (z;T ′) (7)

Equation (7) introduces various new concepts (detailed in Table 2). In particular,
we define IH as the hub importance of a node u since our approach does not require
two types of rankings (hub and authority scores) anymore. Given (7), we have derived
an expertise ranking model that is similar to the basic idea of PageRank. While such
a model has been extremely successfully applied to search engines on the Web, the
drawback is the complexity of computing the PageRank equation11. Especially in
crowdsourcing scenarios that require on-demand discovery of experts based on a set
of specified skills, computation of expertise scores taking up to several hours is not
acceptable. We have first raised this issue in [28] and proposed a combination of
offline mining and online aggregation of expertise ranking scores based on query

11In large social networks (for example network size >10000 nodes), it may take up to several hours to
compute PageRank importance scores.

Distrib Parallel Databases

Table 2 Topic-sensitive hub importance and related symbols

Symbol Description

IH The topic-sensitive hub importance score of a given node in G

T ′ Topic T ′ ⊆ T based on a set of tags applied to interactions. T ′ can be calculated automatically
based on tag-clustering techniques (e.g., see [36]) or by using a predefined skill-based
taxonomy for tags [30]

preferences. Here we apply this approach to solve the problem of context-sensitive
hub discovery in Expert Crowds. The first step (as shown in (7)) was to introduce
predefined topics T ′ that are query independent.

To create topic-sensitive expertise profiles offline through mining that can be ag-
gregated online, we propose the PageRank linearity theorem:

Theorem 1 (Linearity) For any personalization vectors p1,p2 and weights w1,w2
with w1 + w2 = 1, the following equality holds:

PPV(w1p1 + w2p2) = w1PPV(p1) + w2PPV(p2) (8)

The above equality states that personalized PageRank vectors PPV can be com-
posed as the weighted sum of PageRank vectors. The linearity theorem has been
originally introduced by [15, 16] to create topic-sensitive importance scores for Web-
pages, but has not been applied in existing (related) approaches for expertise mining.

IH (u;Q) = w1I
H (u;T1) + w2I

H (u;T2) with Q = {T1, T2} (9)

Equation (9) shows how to create query-dependent rankings established upon
topic-sensitive expertise importance scores using (7) and (8).

7 Evaluation

We structure our evaluation in three sub-sections. First, we discuss a SOA-based
testbed environment allowing us to simulate crowdsourcing scenarios. Second, we
present performance experiments based on logged interaction data to test the ef-
ficiency of our online ranking approach considering concurrent expertise queries.
Third, we analyze the effectiveness of our ranking approach based on synthetic inter-
action data gathered through simulations.

7.1 SOA testbed environment

Our evaluations were gathered using the features of the Genesis2 framework [17]
and infrastructure services (e.g., logging) as introduced in [26]. Genesis2 has a man-
agement interface and a controllable runtime to deploy, simulate, and evaluate SOA
designs and implementations. A collection of extensible elements for these environ-
ments are available such as models of services, clients, registries, and other SOA com-
ponents. Each element can be set up individually with its own behavior, and steered

Distrib Parallel Databases

during execution of a test case. For the experiments in this work, we deployed Gene-
sis2 Backends to the Amazon Elastic Compute Cloud12. We launched, depending on
the amount of involved services instances, two or three Community AMIs of the type
High-Memory Extra Large Instance (17.1 GB of memory) running a Linux OS. In the
following, we provided each instance with the same Genesis2 Backend snapshot via
mountable volumes from the Elastic Block Store. Finally, we deployed the following
environment setup from a local Genesis2 Frontend. It included SOA-based HPS com-
munities established by Genesis2 Web services equipped with simulated behavior and
predefined relations to provide communication channels and instantiate communities.
Services act like HPSs when delegating each other new tasks, processing tasks, re-
delegating existing tasks, or reporting tasks’ progress status. Tasks are not delegated
arbitrarily but must match the receivers capabilities. Therefore, they are tagged with
three keywords one of which must match the picked receivers capabilities. Task pro-
cessing and delegation decisions happen individually and in random time intervals
(1–8 seconds). A hub combines capabilities of multiple communities by distribut-
ing tasks according to expertise areas of a given community (brokering of tasks).
A hub avoids task processing and only forwards tasks. Finally, the deployed testbed
environment has a variable number of services and participants per community. Con-
sequently, the number of hubs varies depending on disparate expertise communities
hubs are connected to (through knows relations).

7.2 Performance aspects

We performed several experiments to test the performance of our expertise ranking
algorithms under varying characteristics such as number of nodes and expertise com-
munities. Graph-based modeling and ranking algorithms have been implemented in
C# and were deployed on our local (lab-based) blade servers accessible via a query
Web service.

Hardware setup Our servers are equipped with Intel Xeon 3.2 GHz CPUs (quad
core) and 10 GB RAM hardware. Interaction logs are managed by MySQL 5.0
databases. A client request pool (RP, see Fig. 9(a)) is created on a separate machine
(Intel Core2 Duo CPU 2.50 GHz, 4 GB RAM) to perform parallel invocations of
the query Web service. Clients are connected with the server via a local 100 MBit
Ethernet.

Performance results The results for online expertise queries13 are summarized in
Fig. 9. The first experiment is based on a graph containing 198 nodes, 200 edges,
and a total number of 10 distinct tags applied to interactions between nodes. The
query service processing time for this environment is shown in Fig. 9(a). We vary
the number of concurrent requests, denoted as RP, by launching multiple threads.
Given a size of RP = 50 and a total amount of # 100 requests to be processed,
setting RP = 100 does not speed up the processing time of requests (i.e., the total

12Amazon EC2: http://aws.amazon.com/ec2/.
13Performance of the offline mining procedure as discussed previously is not shown here.

http://aws.amazon.com/ec2/

Distrib Parallel Databases

Experiment # Req. MIN AVG MAX Total

1 (RP = 10) 50 3167 9083 10368 52543
100 1669 9369 10576 101244
200 1825 9211 10748 190647

1 (RP = 50) 50 1606 15955 29952 50762
100 1482 27440 48562 98685
200 1638 36313 47689 188573

1 (RP = 100) 50 1606 15955 29952 50762
100 1544 28560 57501 105331
200 1591 55185 100370 202394

2 (RP = 50) 100 2308 37891 63258 123677
3 (RP = 50) 100 2854 42041 67516 136266
4 (RP = 50) 100 3276 55058 84739 167778

(a) Processing time

Applied Tags in Exp.
4 (n = 1029 and
communities = 230)

Frequ.

self-* 295
Robustness 306
Testbed 311
DB 314
Healing 321
Trust 322
WS 327
Autonomic 335
Similarity 341
Logging 353

(b) Tag frequency

Query ID Query keywords # Hubs AVG proc. time

Q1 Robustness Logging 105 3993
Q2 Robustness Logging DB Testbed 134 3666
Q3 Robustness Logging DB Testbed Similarity 146 3478

(c) Queries in Exp. 4, number of discovered hubs and AVG processing time

Fig. 9 Processing statistics in simulated environment (in milliseconds)

time needed to process a number of requests). The average processing time increases
by comparing RP = 100 and RP = 50 due to the overhead when handling a larger
amount of requests simultaneously. Thus, we use RP = 50 for all further experiments.

Also, by processing a larger amount of requests, say # 200, the total processing lin-
early increases with the number of requests. We increased the number of nodes and
interactions to understand the scalability of the query Web service under different
conditions: experiment 2 with 579 nodes, experiment 3 comprising 774 nodes, and
experiment 4 with 1029 nodes in the tested. HPSs in the testbed have been deployed
equally on multiple hosts, e.g., 3 cloud hosts in experiment 4 to achieve scalability.
In subsequent experiments detailed in Fig. 9 (experiments 2–4) we focus on a request
pool with RP = 50 and 100 requests to be processed by the query service using differ-
ent keywords (see Fig. 9(c)). To compare the experiments 1–4, we query the interac-
tion graph using the keywords Q = {Robustness, Logging}. Increasing the number of
nodes by a factor ≈ 3 (see experiment 1 and 2), the processing time goes up by 30%.
Comparing the experiments 2 and 3 (node addition of ≈ 30%), the processing time
increases by 10%. By comparing the experiments 3 and 4 (node addition of ≈30%),
the processing time increases by 20%. Our experiments show that the online creation
of expertise profiles based on different queries scales with larger testbeds linearly.

Furthermore, we used different query keywords as shown in Fig. 9(c). The number
of discovered hubs increases if multiple keywords are used (see Fig. 9(b) for the set
of available tags). The average processing time is not significantly influenced by the
number of used keywords.

Distrib Parallel Databases

7.3 Quality of expertise rankings

Next, we analyze the effectiveness of our ranking approach based on synthetic inter-
action data since real interaction logs have not been available at time when perform-
ing this research.

Ranking evaluation metrics To study the results of our ranking approach, we define
a set of ranking evaluation metrics in the following.

– The absolute ranking change RC(u) returns the ranking change in a given query:

RC(u) = pos(u)BLR − pos(u)CSR (10)

BLR are the base-line rankings (here we use the standard HITS algorithm to obtain
the base-line results) compared with CSR context-sensitive rankings using our with
(cf. IH as defined by (9)).

– We define quality Q(u) as the aggregated link weights of u’s neighbors as:

Q(u) =
∑

(u,v)∈E

∑

(z,v)∈E

wzv (11)

We have studied the calculation of link weights extensively in our previous work.
For example, weights can be calculated based on trust metrics (e.g., delegation
behavior) or link intensity [29]. Thus, we refer the interested reader to [30, 36].

Algorithm parameters CSR are obtained based on both link weights and the assign-
ment of preferences to personalization vectors p′(u;T ′) = ∑

(u,v)∈E wT ′
vup(v;T ′). In

our experiments, preferences are assigned as follows:

p(v;T ′) =
{

1 if T ′[v] �= null

0 otherwise
(12)

T ′[v] holds those users who have interacted with other users with focus on a partic-
ular topic T ′. For example, users have performed tasks tagged with keywords related
to T ′. However, not only interaction-based profiles must be used to assign prefer-
ences. In addition, a user’s manually maintained profile (e.g., FOAF) may be used to
account for the user’s interest (i.e., the authority v) in a given topic.

Ranking results To test the effectiveness of CSR, we performed experiments to
study the impact of ratings and link weights on expert rankings. In the following
figures, we show the top-30 ranked experts in a small-scale network (100 nodes).
Results are sorted based on the position within the result set (see horizontal axis of
Fig. 10 and column Rank in Fig. 11). Figure 10(a) shows the node degree and Fig.
10(b) ranking changes obtained by comparing CSR results with BLR (i.e., ranking
results without accounting for metrics and ratings).

Figure 11 shows that all nodes within the top segment received high ratings given
a high degree of links which is the desired property of CSR. Different levels of qual-
ity (i.e., quality mainly being 1 of ranked nodes between the positions 6–30) can be

Distrib Parallel Databases

Fig. 10 Node degree and
results of CSR/BLR comparison

Rank Quality Q Rating

1 3.7 0.8
2 3.0 0.7
3 3.0 1.4
4 3.0 0.5
5 3.0 0.5
6 1.0 0.8
7 1.0 1.6
8 1.0 1.8
9 1.0 0.8
10 1.0 0.3
11 0.4 0.9
12 1.0 1.1
13 1.0 0.9
14 1.0 1.1
15 1.0 0.3

(a) Hub quality and ratings (1–15)

Rank Quality Q Rating

16 1.0 1.3
17 1.0 0.9
18 1.0 0.9
19 1.0 2.7
20 1.0 4.1
21 1.0 1.5
22 1.0 1.0
23 1.0 0.9
24 1.0 1.1
25 1.0 0.2
26 1.0 1.3
27 1.0 1.2
28 1.0 0.8
29 1.0 1.5
30 1.0 2.5

(b) Hub quality and ratings (16–30)

Fig. 11 CSR ranking results: rank, quality, and ratings

explained by the impact of node degree on quality. Some nodes are demoted (negative
ranking change) since the node (e.g., see 11) has received low ratings even though the
node has a high degree of links. Nodes get promoted (positive ranking change) if they
exhibit sufficient high ratings (see 15) or high quality (see 20 which was promoted a
few positions only due to limited degree). Overall, CSR exhibit the demanded proper-
ties of promoting well-connected and rated hubs, thereby guaranteeing the discovery
of reliable entry points to the Expert Crowd.

Distrib Parallel Databases

8 Conclusion and future work

The Web is evolving rapidly by allowing people to publish information and ser-
vices. At the heart of this trend, interactions become increasingly complex and dy-
namic spanning both humans and software services. However, the transformation of
how people collaborate and interact on the Web has been poorly leveraged in exist-
ing service-oriented architectures. The benefit of the presented approach is a seam-
less service-oriented infrastructure of human- and software services. The resulting
service-oriented application needs to be flexible supporting adaptive interactions.

In this paper, we have motivated the need for adaptive interactions discussing an
Expert Crowd scenario where people can register their skills and capabilities as ser-
vices. Mixed service-oriented systems are open ecosystems comprising human- and
software-based services. We discussed the HPS architecture enabling dynamic in-
teractions in mixed service-oriented systems. We defined a novel expertise ranking
approach that is based on context-aware interactions. Our ranking approach shows
promising results, but needs to be further validated in real crowdsourcing environ-
ments. Our future work includes the deployment and evaluation of the implemented
framework in the EU FP7 project COIN. The emphasis of COIN is to study new
concepts and develop tools for supporting the collaboration and interoperability of
networked enterprises. Also, we will further study the effectiveness and quality our
expertise ranking approach in large-scale collaboration environments.

Acknowledgements The author would like to thank Schahram Dustdar, Dimka Karastoyanova and
Frank Leymann for fruitful discussions on modeling dynamic interactions in human-centric service-
oriented environments. Furthermore, we thank Lukasz Juszczyk for providing the Genesis2 framework,
Harald Psaier for setting up the testbed experiments and Florian Skopik for discussions related to metrics
and monitoring of mixed service-oriented systems.

References

1. Adams, M., ter Hofstede, A.H.M., Edmond, D., Aalst, W.M.P.V.D.: Worklets: a service-oriented im-
plementation of dynamic flexibility in workflows. In: OTM Conferences (1), pp. 291–308 (2006)

2. Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality content in social
media. In: WSDM, pp. 183–194. ACM, New York (2008)

3. Agrawal, A., et al.: WS-BPEL Extension for People (BPEL4People), V1.0 (2007)
4. Amend, M., et al.: Web Services Human Task (WS-HumanTask), Version 1.0 (2007)
5. Balthazard, P.A., Potter, R.E., Warren, J.: Expertise extraversion and group interaction styles as perfor-

mance indicators in virtual teams: how do perceptions of it’s performance get formed? DATA BASE
35(1), 41–64 (2004)

6. Brabham, D.: Crowdsourcing as a model for problem solving: an introduction and cases. Convergence
14(1), 75 (2008)

7. Breslin, J., Passant, A., Decker, S.: Social web applications in enterprise. Soc. Semantic Web 48,
251–267 (2009)

8. Cugola, G., Nitto, E.D., Fuggetta, A., Ghezzi, C.: A framework for formalizing inconsistencies and
deviations in human-centered systems. ACM Trans. Softw. Eng. Methodol. 5(3), 191–230 (1996)

9. Dom, B., Eiron, I., Cozzi, A., Zhang, Y.: Graph-based ranking algorithms for e-mail expertise analysis.
In: DMKD, pp. 42–48. ACM, New York (2003)

10. Dustdar, S.: Caramba a process-aware collaboration system supporting ad hoc and collaborative pro-
cesses in virtual teams. Distrib. Parallel Databases 15(1), 45–66 (2004)

11. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected
World. Cambridge University Press, Cambridge (2010)

Distrib Parallel Databases

12. Garlan, D., Poladian, V., Schmerl, B.R., Sousa, J.P.: Task-based self-adaptation. In: WOSS, pp. 54–57
(2004)

13. Gentry, C., Ramzan, Z., Stubblebine, S.: Secure distributed human computation. In: EC’05, pp. 155–
164. ACM, New York (2005)

14. Gyöngyi, Z., Molina, H.G., Pedersen, J.: Combating web spam with trustrank. In: VLDB, pp. 576–
587. ACM, New York (2004)

15. Haveliwala, T.H.: Topic-sensitive pagerank. In: WWW, pp. 517–526. ACM, New York (2002)
16. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW, pp. 271–279. ACM, New York

(2003)
17. Juszczyk, L., Dustdar, S.: Script-based generation of dynamic testbeds for soa. In: ICWS ’10. IEEE,

New York (2010)
18. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)
19. Kosorukoff, A., Goldberg, D.E.: Genetic algorithms for social innovation and creativity. Tech. rep.,

University of Illinois at Urbana-Champaign (2001)
20. Kumar, A., Aalst, W.M.P.V.D., Verbeek, E.: Dynamic work distribution in workflow management

systems: How to balance quality and performance. J. Manag. Inf. Syst. 18(3), 157–193 (2002)
21. Mendling, J., Ploesser, K., Strembeck, M.: Specifying separation of duty constraints in bpel4people

processes. In: Business Information Systems. LNBIP, pp. 273–284. Springer, Berlin (2008)
22. Moody, P., Gruen, D., Muller, M.J., Tang, J., Moran, T.P.: Business activity patterns: a new model for

collaborative business applications. IBM Syst. J. 45(4), 683–694 (2006)
23. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the

Web. Tech. rep., Stanford Digital Library Technologies Project (1998)
24. Panteli, N., Davison, R.: The role of subgroups in the communication patterns of global virtual teams.

IEEE Trans. Prof. Commun. 48(2), 191–200 (2005)
25. Petrie, C.: Plenty of room outside the firm. Internet Comput. 14, 92–96 (2010)
26. Psaier, H., Juszczyk, L., Skopik, F., Schall, D., Dustdar, S.: Runtime behavior monitoring and self-

adaptation in service-oriented systems. In: SASO. IEEE, New York (2010)
27. Russell, N., Aalst, W.M.P.V.D.: Evaluation of the bpel4people and ws-humantask extensions to

ws-bpel 2.0 the workflow resource patterns. Tech. rep., BPM Center Brisbane/Eindhoven (2007)
28. Schall, D.: Human interactions in mixed systems—architecture, protocols, and algorithms. PhD thesis,

Vienna University of Technology (2009)
29. Schall, D., Dustdar, S.: Dynamic context-sensitive pagerank for expertise mining. In: SocInfo. LNCS.

Springer, Berlin (2010)
30. Schall, D., Skopik, F.: Mining and composition of emergent collectives in mixed service-oriented

systems. In: CEC ’10. IEEE, New York (2010)
31. Schall, D., Truong, H.L., Dustdar, S.: The human-provided services framework. In: EEE ’08. IEEE,

New York (2008)
32. Schall, D., Truong, H.L., Dustdar, S.: Unifying human and software services in Web-scale collabora-

tions. IEEE Internet Comput. 12(3), 62–68 (2008)
33. Schall, D., Dustdar, S., Blake, M.B.: Programming human and software-based web services. Com-

puter 43, 82–85 (2010)
34. Shahaf, D., Horvitz, E.: Generalized task markets for human and machine computation (2010)
35. Shetty, J., Adibi, J.: Discovering important nodes through graph entropy the case of enron email

database. In: LinkKDD, pp. 74–81. ACM, New York (2005)
36. Skopik, F., Schall, D., Dustdar, S.: Modeling and mining of dynamic trust in complex service-oriented

systems. Inf. Syst. 35(7), 735–757 (2010)
37. Skopik, F., Schall, D., Dustdar, S.: Trustworthy interaction balancing in mixed service-oriented sys-

tems. In: SAC ’10, pp. 799–806. ACM, New York (2010)
38. Su, Q., Pavlov, D., Chow, J.H., Baker, W.C.: Internet-scale collection of human-reviewed data. In:

WWW ’07, pp. 231–240. ACM, New York (2007)
39. Thomas, J., Paci, F., Bertino, E., Eugster, P.: User tasks and access control over Web services. In:

ICWS’07, pp. 60–69. IEEE, New York (2007)
40. von Ahn, L.: Games with a purpose. IEEE Comput. 39(6), 92–94 (2006)
41. Vukovic, M.: Crowdsourcing for enterprises. In: IEEE Congress on Services, pp. 686–692. IEEE,

New York (2009)
42. Yang, J., Adamic, L., Ackerman, M.: Competing to share expertise: the taskcn knowledge sharing

community. In: Int. Conf. on Weblogs and Social Media (2008)
43. Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities: structure and

algorithms. In: WWW, pp. 221–230. ACM, New York (2007)

	A human-centric runtime framework for mixed service-oriented systems
	Abstract
	Introduction
	Related work
	Crowdsourcing
	Interaction modeling
	Metrics and expertise mining

	Crowdsourcing
	Overview
	SOA for crowdsourcing

	HPS interaction model
	HPS activity model
	Hierarchical activities
	Task model
	Controlling the execution of activities
	Creating announcements

	Task execution model

	Architecture
	HPS framework
	Design tools
	API layer
	Runtime infrastructure services
	Middleware layer

	Data collections
	Interactions and monitoring

	Expertise ranking
	Context-sensitive interaction mining
	Hubs and authorities
	Personalized expert queries
	Ranking model

	Evaluation
	SOA testbed environment
	Performance aspects
	Hardware setup
	Performance results

	Quality of expertise rankings
	Ranking evaluation metrics
	Algorithm parameters
	Ranking results

	Conclusion and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

