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Abstract—Complex service-oriented systems typically span
interactions between people and services. Compositions in such
systems demand for flexible interaction models. In this work we
introduce an approach for discovering experts based on their
dynamically changing skills and interests. We discuss human
provided services and an approach for managing user pref-
erences and network structures. Experts offer their skills and
capabilities as human provided services that can be requested
on demand. Our main contributions center around an expert
discovery method based on the concept of hubs and authorities
in Web-based environments. The presented discovery and
interaction approach takes trust-relations and link properties
in social networks into account to estimate the hub-expertise
of users. Furthermore, we show how our approach supports
flexible interactions in mixed service-oriented systems.

Keywords-mixed service-oriented systems, expert discovery,
emergent collectives, hubs and authorities, ExpertHITS

I. INTRODUCTION

The Web has evolved from a distributed repository of

content to an interactive medium in which people actively

shape the availability of information and services. Part of

this evolution is often called Web 2.0 and characterized

by the emergence of knowledge sharing and online service

composition platforms. The transformation of how people

interact on the Web has been poorly leveraged in exist-

ing SOA (service-oriented architecture)-based systems [1].

In traditional composition scenarios, services are created

from the top down, without considering the availability and

preferences of people, constraints and relationships, and the

support of dynamic, ad-hoc interactions. The Web’s people-

centric nature has led to an unusual role for humans in

information systems. Certain problems that are hard for

software services to solve are outsourced to humans. As an

example, task-based platforms for human computation (i.e.,

crowdsourcing) including Amazon Mechanical Turk1 enable

access to the manpower of thousands of people on demand

by creating human-tasks that are processed by the crowd.

The service-oriented computing paradigm and Web ser-

vices technology offer the ideal technical grounding for

virtualizing the capabilities of knowledge workers in large

scale computing environments [2]. Techniques for human

1Amazon Mechanical Turk: http://www.mturk.com/

computation in service-oriented systems have not yet uncov-

ered its full potential. The research performed in this work

centers on harnessing human capabilities within service-

oriented environments while leveraging the new innovations

provided by the Web 2.0 paradigm. People offer services to

engage in different Web-based interaction scenarios driven

by often intrinsic properties such as social interest, evolving

skills and trust relations; and community dynamics.

In this paper we utilize Human-Provided Services

(HPS) [2] enabling flexible interactions in service-oriented

systems. In HPS we advocate that people should be able

to define services following the same principles as SOA.

To avoid the need for parallel systems of software-based

services (SBS) and HPS, we define a mixed service-oriented

system comprising SBS and HPS. Experts offer their skills

and capabilities as HPS that can be requested on demand.

Thus, mixed service-oriented environments are difficult to

manage due to changing interaction patterns, behavior, and

faults resulting from varying conditions in the environment.

To address these complexities, we propose mining of inter-

actions focusing on human characteristics in SOA.

In this work we present the following key contributions:

(i) We discuss the discovery and interactions in mixed

service oriented systems comprising HPS and SBS. (ii)

Estimation of user reputation based on a context-sensitive

algorithm. Our approach, called ExpertHITS, is based on

the concept of hubs and authorities in Web-based environ-

ments. (iii) An approach for community reputation (the hub-

expertise of users) influenced by trust relations. Dynamic

link weights are based on trust and user rating influenced

by the query context. ExpertHITS is calculated online, thus

fully personalized based on the expert-requester’s prefer-

ences (i.e., the demanded set of skills). (iv) Implementation

and evaluation of our approach demonstrating scalability and

effectiveness of the algorithm.

This paper is organized as follows. In Section II we

present a motivating example detailing the need for flexible

composition and interactions models. Section III introduces

the fundamental idea and basic concepts of our approach.

A detailed description of the proposed discovery approach

is provided in Section IV. Our evaluation is presented in

Section VI. Finally, we discuss related work in Section VII

and conclude the paper in Section VIII.



II. CROWDSOURCING SCENARIO

A motivating scenario for discovering experts on demand

and flexible interaction support is depicted in Figure 1.

The process model may be composed of single tasks that

are either processed by corresponding Web services or

are assigned to responsible persons (see WS-HumanTask

[3]).We assume that the task owners in this process exchange

only electronic files and interact by using communication

tools. While various languages and techniques for modeling

such processes already exist, for example Business Process

Execution Language [4] (BPEL), we focus on another aspect

in this scenario: discovery and interactions with trusted

experts. A language such as BPEL demands for the precise

definition of flows and input/output data. However, even in

carefully planned processes with human participation, for

example modeled as BPEL4People activities [5], ad-hoc

interactions and adaptation are required due to the com-

plexity of human tasks, people’s individual understanding,

and unpredictable events. Especially, if people have not

yet worked jointly on similar tasks, it is likely that they

need to set up a meeting for discussing relevant information

and process artifacts. Personal meetings may be time and

cost intensive, especially in cases where people belong

to different geographically distributed organizational units.

Various Web 2.0 technologies, including forums, Wiki pages

and text chats, provide well-proven support for online-work

in collaborative environments. However, several challenges

remain unsolved that are addressed in this paper:

(i) Who is the right expert that can assist in solving

problems which people face while participating in the pro-

cess? (ii) How can third parties (experts) be contacted and

informed about the current situation and how can they easily

be involved in ongoing collaborations? (iii) Based on which

decision are experts selected, which information needs to

be exchanged, and how can such scenarios be supported in

service-oriented systems?

task-A

Expert Web

Process

discovery 

and selection

task-C

task-B

task-D

task-F

task-E

delegations

RFS

s

x

r

q

u

w

z

y
t

v

Symbols:

task

process flow

expert

expertise area

network relation

Figure 1. Discovering and including experts for online help and suppport.

Emergent collectives. Here we propose the Expert Web

consisting of connected experts that provide help and sup-

port in a service-oriented manner. The members of this

expert web are either humans, such as company employees

offering help as online support services or can in some

cases be provided as software-based services. Applied to

enterprise scenarios, such a network of experts, spanning

various organizational units, can be consulted for efficient

discovery of available support. The expert seekers send

requests for support, abbreviated as RFSs. Experts may

also delegate RFSs to other experts in the network, for

example when they are overloaded or not able to provide

satisfying responses. Following this way, not only users of

the expert network establish social relations to experts, but

also relations between experts emerge.

III. DISCOVERY OF EMERGENT COLLECTIVES

In this section we will detail the basic concepts enabling

the discovery of experts. Our approach is based on the

following idea: given a search query containing the set

of relevant skills, who is the expert (i) satisfying these

demanded skills and (ii) how well is this expert connected to

other people having similar expertise. From the Expert Web

point of view, finding the right expert by performing skill

matching is not sufficient. We also need to consider whether

the expert will be able to delegate RFSs to other peers in

the Expert Web.

A. Trust Emergence

Traditional rating and ranking models usually neglect

social aspects and individual preferences. However, actors

in the Expert Web may not be compatible with respect to

working style and behavior. As a consequence, social aspects

need to be considered and require dynamic interaction

models. In this paper, we focus on social trust to support

and guide delegations of requests. In contrast to a common

security perspective, social trust refers to the flexible inter-

pretation of previous collaboration behavior [6], [7] and the

similarity of dynamically adapting interests [8]. Especially

in collaborative environments, where users are exposed to

higher risks than in common social network scenarios [9],

and where business is at stake, considering social trust is

essential to effectively guide human interactions. Relying on

these works, we define trust in the Expert Web as follows:

Trust reflects the expectation one expert has about

another’s future behavior to perform delegated

RFSs dependably, securely, and reliably based on

experiences collected from previous interactions.

Various metrics can be calculated by analyzing interaction

logs. Relation metrics describe the links between actors by

accounting for (i) recent interaction behavior, (ii) profile

similarities (e.g., interest or skill similarities), (iii) social

and/or hierarchical structures (e.g., role models).



B. Hubs and Authorities

In this work we utilize the concept of hubs and au-

thorities in Web-based environments. This concept has

been introduced by Kleinberg [10] to rank Web pages

in search queries using the ‘HITS algorithm’ (Hyperlink-

Induced Topic Search). The notion of authorities in social

or collaborative networks can be interpreted as a measure to

estimate the relative standing or importance of individuals

in social networks. Compared to methods such as PageRank

[11], the main advantage of the HITS model is that hub and

authority scores are calculated for each node in the network.

Applying this idea in our scenario, a member of the Expert

Web may receive an RFS and delegate work to some other

peer in the network (characterizing hubs in the network).

Receivers of the delegated work, however, expect RFSs

fitting their skills and expertise (i.e., being an authority

in the given domain). Careless delegations of work will

overload these peers resulting in degraded processing time

due to missing expertise. Within the Expert Web, authorities

give feedback using rating mechanism (e.g., a number on

the scale from 1 to 5) to indicate their satisfaction —

whether a particular hub distributes work according to their

skills and interest. Thus, a ‘good hub’ is characterized by a

neighborhood of peers that are satisfied with received RFSs.

On the other hand, delegation of work is strongly influenced

by trust, for example, whether the initial receiver of the

RFS (hub within the Expert Web) expects that the peer

will process work in a reliable and timely manner. Thus,

RFS receivers need to be trusted by influential hubs that are

highly rated to be recognized as authoritative peers in the

Expert Web.

C. Personalized Expert Queries

In this work, we define this concept as expert hubs that are

well-connected (i.e., social network structure and connec-

tions based on joint collaborations) given a particular query

context. Delegation is important in flexible, interaction-based

systems because it becomes clear that expert hubs will attract

many RFSs over time, thus presenting bottlenecks in terms

of processing time needed to work on RFSs. On the other

side, being a hub in the Expert Web also means that a person

knows many other experts in similar fields of interest. We

argue that the likelihood of being able to delegate RFSs to

other experts greatly increases depending on the hubness of

a person due to the embedding of a hub in expert areas (e.g.,

communities or interest groups). The major challenge in this

scenario is that hubness needs to be calculated on demand

based on a query. The query determines the context through

the set of skills relevant for discovering experts.

An important aspect of the presented approach is to

select interactions based on (query) context information.

We assume that each interaction (e.g., based on delegated

RFSs) is associated with context tags based on a skill

taxonomy. The following steps outline our approach at a

high level, which will be detailed in subsequent sections.

First, matching is performed based on the query context. A

skill model is used (not detailed in this work) to retrieve the

set of qualified users. Second, expert hubs are discovered

using link and interaction information.

Let us start formalizing this concept by discussing two

scenarios as depicted in Figure 2. First, a query (see QA

or QB) is specified either manually by a (human) expert

seeker or derived automatically from a given process context,

for example a predefined rule denoting that a particular set

of skills is needed to solve a problem. The purpose of a

query is to return a set of experts who can process RFSs,

either by working on the RFSs or delegation. Thus, QA

would return HA as the user who is well connected to

authorities in query context QA. There are two influencing

factors, i.e., relations, determining hub- and authority scores:

(i) how much hubs trust authorities (depicted as filled arrows

from hubs to authorities) and (ii) ratings hubs receive from

authorities (open arrows to hubs). Trust mainly influences

the potential number of users (e.g., known by HA) who can

process delegated RFSs. On the other hand, receivers can

associate ratings to RFSs to express their opinion whether

the delegated RFSs fit their expertise. QB may demand for

a different set of skills. Thus, not only matching of actors

is influenced, but also the set of interactions and ratings

considered for calculation ExpertHITS (i.e., only the set of

RFSs and ratings relevant for QB).

Note, single interactions that lead to trust relations, as

well as single rating actions that lead to rating relations are

not depicted by Figure 2. A single arrow may in fact depict

a number of actions (interactions or rating actions).

This approach provides a powerful tool for expert discov-

ery because reputation (for example, within communities)

is expressed as hub-expertise by weighting trust relations

in personalized scopes (through the query context) and

feedback-ratings. Also, we believe that our approach is

difficult to cheat on because hub-expertise is influenced by

how well hubs are connected to multiple authorities who

propagate their expertise back to hubs. We will further

elaborate on this concept in the following sections.
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Figure 2. Hubs with different areas of expertise.



IV. DISCOVERY OF EXPERT HUBS

Here we present our expert discovery algorithm that

is influenced by social trust and rating mechanisms. Our

algorithm accounts for context information and weighted

links between actors. Context is utilized by considering

relations of experts in different scopes. Thus, the goal of

our algorithm is to find hubs with respect to context. In

the following, we discuss the basic flow of actions in the

Expert Web. The actions include delegation of RFSs, ratings

of requests, and advanced delegation patterns.

A. Hub Discovery

Let us assume that a query Q is specified to discover

an expert hub (see Figure 3(a)). Every query influences the

set of prior ratings (arrows pointing to u) and interactions

(i.e., actions) that need to be considered when calculating

hub- and authority scores. Consider the query context Q

comprising actions related to the demanded set of skills.

In this case, u has been discovered as the entry point to

the Expert Web denoted as HB . The matching algorithm to

select related actions is not detailed in this work.

B. Delegation Actions

In Figure 3(a), user u receives an RFS issued towards the

Expert Web. Since u represents the hub expert, u may decide

to delegate the request to one of its neighbors v, w, y, z,

which can be discovered through knows relations [12]

(Figure 3(b)). Also, multiple delegation receivers of the same

RFS can be selected if, for example, u has limited trust in

its neighbors v, w, y, z.

In our Expert Web application scenario, knows is a

bidirectional relation between users. A relation becomes

active if both users acknowledge that they are connected

to each other (v knows u and u knows v), a simple yet

effective mechanism to support growth in social networks

(e.g., newcomers and bootstrapping problem) while preserv-

ing user control. Notice, knows relations do not contain

context related information such as tags. The context of

interactions is derived from delegated RFSs (tags or type of

RFS classified by using a skill taxonomy). To support growth

in networks (e.g., how can newcomers become members of

Q

H
u

w
v

z
x

y

(a) Discovery of expert hub.

Q

H

u

w
v

z
x

y

(b) Selection of authority.

Figure 3. Hub discovery and trust-based selection of authorities.

communities), we introduce an advanced interaction pattern

in the Expert Web depicted by Figure 4(a).

C. Triad Delegation Pattern

An authority may need to delegate an RFS received from

the hub to somebody who is known to the authority, but

not the hub. This pattern is shown in Figure 4(a). Hub u

delegates an RFS to y, which is in turn delegated to x and,

thus, being responsible for processing the RFS.

If ties (i.e., through knows relations) between the pairs

(u, y) and (y, x) exist, it is likely that x will attempt to

establish a connection to u as well. This concept is known

as triadic closure in social networks [13] and can be applied

to support interaction patterns in service-oriented systems.

The triad interaction pattern (see [7]) enables x to con-

nect to hubs and helps increasing its authority in the Expert

Web. As mentioned previously, knows is a bidirectional

connection and needs to be acknowledged by u.

D. Rating Procedure

An RFS is delivered back to the expert seeker from the

Expert Web; i.e., the selected hub u depicted in Figure

4(b). The main argument of our model is to determine

those hubs that are well embedded in expertise areas (e.g.,

communities). Thus, the hub-score should be influenced

by feedback ratings denoting the level of satisfaction of

authorities. Ratings are subjective opinions of authorities

with respect to RFSs received from hubs, i.e., whether RFSs

fit the expertise area of authorities. In the final step, RFSs

are rated (see dashed open arrows) expressing the precision

of received delegations. Indeed, such ratings are also given

to RFSs traversing the Expert Web through triad delegation

patterns. Given the scenario in Figure 4(a) and Figure 4(b),

automatic propagation of ratings (e.g., if a delegated RFS

from u to y was further delegated to x) is currently not

considered in our model. Thus, x rates the RFS received

from y and similarly y from u.

E. Trust Updates

Trust relations, based on experts’ behavior are periodically

updated with recent interaction data. Those interactions (re-

flected by filled dashed arrows) are aggregated to interaction

metrics that are interpreted by pre-defined rules to infer trust.
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Figure 4. Advanced interaction patterns and feedback ratings.
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V. METRIC CALCULATION

Considering the loosely structured and dynamically bound

Expert Web example, it is important to derive metrics that

can be used to infer trust relations in an automated manner.

A. ExpertHITS

We discuss the formal model for our expertise ranking

algorithm consisting of (i) hub score H(u;Q) of user u in

query context Q and (ii) authority score A(v;Q) of user v

in the same query context Q.

H(u;Q) =
∑

v∈knows(u)

wQ
vuA(v;Q) (1)

A(v;Q) =
∑

u∈knows(v)

wQ
uvH(u;Q) (2)

• H(u;Q): Hub score of u acting as a reliable entry

point to the Expert Web brokering RFSs to authorities.

Hubs are identified based on the demanded set of skills,

knows relations connecting u to other experts and

feedback ratings received from prior delegations.

• A(v;Q): Authority score of user v. Authorities are

skilled users (experts) that are connected to influential

hubs. Authority means that users process RFSs received

from hubs in a reliable, trustworthy manner.

• wQ
uv: Trust influences the delegation behavior of hubs

by selecting authorities based the success of inter-

actions; in our example successfully delegated and

processed RFSs.

• wQ
vu: Denotes the connection strength of an authority

v to hub u. The weight is calculated using information

from ratings given by v to RFSs received from u.

B. Rating Mechanism

We calculate the rating r̃vu as the exponential moving

average (EMA) to smoothen the sequence of ratings (i.e.,

short-term fluctuations). EMA gives more importance to re-

cent ratings while not discarding older ratings. This model is

a simple yet effective method. Figure 5 shows the following

steps:

• Consider interactions between u and v (hub u dele-

gating RFSs to the authority v) as an interaction trace

u
t−n
→ v, . . . , u

t−1
→ v, u

t
→ v.

We obtain a set of ratings {rvu,t−n, . . . , rvu,t−1, rvu,t},

where v rates u (Figure 5(a)).

• We define η with 0 < η < 1 as a coefficient

to smoothen previous ratings of v. In particular, the

factor η is based on the ratings v has given to all

other delegating HPSs (Figure 5(b)). Therefore, the

factor η expresses the relationship between the two

sets of ratings X = {rvu,t, rvo,t, rvn,t, rvm,t} and

Y = {rvu,t−1, rvo,t−1, rvn,t−1, rvm,t−1}. The calcula-

tion of η is performed based on the correlation coef-

ficient correl(X,Y ) and a mapping of the coefficient

η = correl(X,Y )+1
2 to obtain strictly positive values.

• We update the set of ratings into r̃vu associated with

delegations from u to v (Figure 5(c)). The update rule

is defined as:

r̃vu,t = ηrvu,t + (1 − η)r̃vu,t−1 (3)

• Finally, we calculate aggregated ratings AR(u) for

u based on inbound rating links inlinks(u) (Fig-

ure 5(d)). AR is calculated as the weighted sum of

smoothened ratings:

AR(u) =
∑

v∈inlinks(u)

w(v)r̃vu,t×





∑

z∈inlinks(u)

w(z)





−1

(4)

Currently we assume equal importance for each weight

using w(v) = 1
|inlinks(u)| . The weight could be adjusted

based on the trustworthiness of ratings to prevent

malicious rating behavior.

C. Trust Weights

The weight wQ
uv can be interpreted as how much u trusts v

in processing RFSs in a reliable manner (Eq. 5). Specifically,

experts’ behavior in terms of reliability and RFS processing

successes, are periodically updated with recent captured

interaction data.

wQ
uv ≡

succ. delegations from u to v
∑

w∈knows(u) succ. delegations from u to w
(5)

Reliability and processing success of RFSs are based on a

task rewarding schema. Each RFS is associated with a task

ht. Tasks model RFS states such as accepted, inprogress,

finished or aborted. Thus, task rewards are automatically
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Figure 6. RFS rewarding model.

given to RFSs to measure the degree of success. For ex-

ample, fast and reliable processing of tasks yields higher

rewards, thereby resulting in higher trust in a collaboration

partner. To model task rewards, we use a function belonging

to the family of sigmoid functions with the general form

P (t) = 1
1+e−t (see Figure 6). Sigmoid functions are typi-

cally used to model systems that saturate at large values of

t, for example, the processing time of RFSs. The detailed

mechanisms of the rewarding model can be found in [14].

Here we briefly discuss the most important parameters. The

task rewarding function fT based on the task processing time

PT (ht) for a given task ht is defined as:

fT (PT (ht)) =
ψ

1 + EXP (−PT (ht)−σ

δ
)

(6)

Table I
REWARDING MODEL AND RELATED SYMBOLS.

Symbol Description

fT (PT (ht)) Rewarding function based on processing time
PT (ht).

τ Time interval (expiration time) after which ht fails.
ψ Saturation of fT : [0, τ ] → [0, ψ], ψ ∈ [0, 1].
σ Parameter to define the horizontal displacement of fT .
δ Parameter to define the steepness of fT ’s slope.

fT〈M〉 Task rewarding function for model M(ψ, σ, δ).

Mn Depicts a rewarding model identified by the index n.

A plot of this function based on different parameters (see

Mn in Table I) is shown by Figure 6(a). The basic idea is

to use different models (e.g., M1,M2,M3) to account for

the risk that a particular type of RFS will not be processed

by an HPS. Risk is automatically calculated (parameter δ –

Table I) based on finished versus aborted tasks within the

Expert Web community. On other words, the task rewarding

function fT should fall less steeply if a particular type

of RFS tends to be aborted by the community. To model

risk for the task progression spectrum that is based on the

task processing time, fT needs to be refined as a stepwise

function:

f∗
T 〈M〉(PT (ht)) =

{

fT 〈MΛ〉(PT (ht)) , if
d2fT 〈M〉

dt
< f ′′

T 〈M〉

fT 〈M〉(PT (ht)) , otherwise
(7)

Figure 6(b) shows the refined rewarding function. Pro-

gression (based on processing time) towards a particular

point (the inflection point of fT – see 0.5 on horizontal

axis) results in equal rewards regardless of the model

(M1,M2,M3). Beyond this point, RFSs are differently

rewarded depending on the risk modeled by Mn. For exam-

ple, given M3 that models RFSs with higher risks, higher

rewards are given because a successfully processed RFS

becomes more valuable to the delegating hub. The benefit of

this approach is that the rewarding function fT undergoes

a self-configuration process by selecting a particular model

Mn automatically based on monitored interactions. Instead

of selecting a schema manually, rewarding adjusts based on

the emergence of interaction behavior and dynamics within

the Expert Web.

VI. EVALUATION

In our experiments we focus on the performance of

ExpertHITS as well as the influence of trust and ratings

on hub/authority scores. In this work, we do not deal

with performance issues due to network delay or end-to-

end characteristics of the entire system. Here we focus on

ExpertHITS calculation time under different conditions.

A. Experimental Setup

In all our tests we used a machine with Intel Core2 Duo

CPU 2.50 GHz, 4GB RAM, running Java 1.6 and an OSGi

Java container for hosting services. A query service invoking

the ExpertHITS algorithm including metric calculation has

been implemented in Java. The ExpertHITS algorithm has

been implemented on top of a Java-based graph toolkit [15].

B. Generation of Synthetic Interaction Graph

The approach we take is to generate artificial interaction

data imitating real collaboration environments. For this

purpose, we adopt the preferential attachment method [16]

which provides a realistic model for science collaboration

scenarios. Specifically, a collaboration network is modeled

as an undirected graph G = (N,E) comprising a set of

nodes N and edges E establishing connections between

nodes. The probability of establishing a new connection

to a given node is proportional to its degree distribution.

Using this basic network structure, we generate interactions

(delegations and ratings) associated with edges.

Assuming a scale free network with power law distribu-

tion, hubs play a central role, thereby generating a large

amount of delegations. This behavior is taken into account

when generating artificial interactions by estimating that

80% of delegations are initiated by about 20% of network

HPSs; thereby immitating hub behavior of certain nodes.

C. Performance Results

Complexity is a crucial factor in order to support personal-

ization of queries. We analyze different networks comprising



actors and interactions that have already been matched with

a specific query context Q. The system must be able to

handle multiple requests simultaneously. We analyze the

performance of ExpertHITS under different load conditions.

At this stage, we focus on small-scale (100 nodes) and

medium-scale (1000 nodes) networks. ExpertHITS results

are calculated for 50-500 concurrent requests. A queue

holds instances of the constructed network. A thread pool

instantiates worker threads to calculate personalized ranking

scores based on query preferences.

Table II
AVERAGE PROCESSING TIME CONCURRENT REQUESTS (SECONDS).

Requests 50 100 200 300 400 500

Small-scale 9 16 20 21 24 25

Medium-scale 199 325 390 986 1432 1663

Small-scale networks can be processed in a real-time

manner requiring in our experiments in the worst case up to

12 seconds. On average, 19 seconds can be expected under

different load conditions (50-500 concurrent requests). The

results of medium-scale networks are compared with small-

scale networks in Table II. Computing ExpertHITS in such

networks takes up to several minutes when serving concur-

rent requests (i.e., on average 390s at a load of 200 requests).

Load conditions in the range between 300-500 concurrent

executions of the algorithms results on average in response

times between 15-25 minutes. Given our initial online help

and support example, we believe it is sufficient to compute

ExpertHITS in this magnitude because illustrated processes,

for example in enterprise crowdsourcing, do not demand

for hard computational (time) constraints. Scalability and

reduced processing time can be achieved by using multiple

servers and load balancing mechanisms. These mechanisms

are subject to our future work and performance evaluation.

D. Hub Quality and Relation to HITS

To study the results of ExpertHITS, we define a set of

ranking evaluation metrics in the following.

• Absolute ranking change returns the ranking change of

u in a given result set. The ranking change RC(u) is

defined as follows:

RC(u) = pos(u)HITS − pos(u)ExpertHITS (8)

• We define quality as the aggregated trust weights of u’s

neighbors. Quality is calculated as

Q(u) =
∑

v∈knows(u)

∑

z∈inlinks(v)

wzv (9)

To test the effectiveness of ExpertHITS, we performed

experiments to study the impact of ratings and trust on

expert rankings. In the following figures, we show the top-

30 ranked experts in a small-scale network (100 nodes).

Figure 7. Ranking change and node degree.

Rank Quality Q Rating

1 3.7 0.8

2 3.0 0.7

3 3.0 1.4

4 3.0 0.5

5 3.0 0.5

6 1.0 0.8

7 1.0 1.6

8 1.0 1.8

9 1.0 0.8

10 1.0 0.3

11 0.4 0.9

12 1.0 1.1

13 1.0 0.9

14 1.0 1.1

15 1.0 0.3
(a) Hub quality and ratings (1-15).

Rank Quality Q Rating

16 1.0 1.3

17 1.0 0.9

18 1.0 0.9

19 1.0 2.7

20 1.0 4.1

21 1.0 1.5

22 1.0 1.0

23 1.0 0.9

24 1.0 1.1

25 1.0 0.2

26 1.0 1.3

27 1.0 1.2

28 1.0 0.8

29 1.0 1.5

30 1.0 2.5
(b) Hub quality and ratings (16-30).

Figure 8. ExpertHITS ranking results: ranking change, quality, and ratings.

Results are sorted based on the position within the result

set (see vertical axis in Figure 7 and rank in Figure 8).

Figure 7 shows the degree of network nodes and ranking

changes obtained by comparing ranking results using the

HITS algorithm without taking trust or ratings into account.

In Figure 8, one can see that all nodes within the top

segment received high ratings given a high degree of links

which is the desired property of ExpertHITS. Different levels

of quality (i.e., quality mainly being 1 of ranked nodes be-

tween the positions 6-30) can be explained by the impact of

node degree on quality. Some nodes are demoted (negative

ranking change) since the node (e.g., see 11) has received

low ratings even though the node has a high degree of links.

On the other hand, nodes get promoted (positive ranking

change) if they exhibit sufficient high ratings (see 15) or

high quality (see 20 which was promoted a few positions

only due to limited degree). Overall, ExpertHITS exhibits

the demanded properties of promoting well-connected and

rated hubs, thereby guaranteeing the discovery of reliable

entry points to the Expert Web.



VII. RELATED WORK

We believe that models and algorithms to determine the

expertise of users are important in future service-oriented

environments. The notion of service-orientation is not only

applicable to Web services. Service-orientation in human

collaboration is becoming increasingly important. Task-

based platforms allow users to share their expertise [17]; or

users offer their expertise by helping other users in forums or

answer communities [18]. By analyzing email conversations

[19], the authors studied graph-based algorithms such as

HITS [10] and PageRank [11] to estimate the expertise of

users. The authors in [20] followed a graph-entropy model

to measure the importance of users. The work by [21]

followed a graph-based approach and applied HITS as well

as PageRank in online communities (i.e., a Java question

and answer forum). While the above cited works attempted

to model the importance of users based on interactions

and information flow; they ignore the fact that interactions

typically take place in different contexts. Approaches for

calculating personalized PageRank scores [22], [23] were

introduced to enable topic-sensitive search on the Web, but

have not been applied to human interaction analysis. We

propose a model where expertise analysis is performed con-

sidering context information. Our proposed algorithm can

be computed online, while most other approaches require

offline calculation (mining).

VIII. CONCLUSION AND FUTURE WORK

In this paper we introduced a new approach for supporting

reputation- and trust-based discovery and interactions in

Expert Webs. Our approach is based on the HPS concept

enabling knowledge workers to offer their skills and exper-

tise in service-oriented systems. Unlike traditional top-down

models, we proposed the combination of preplanned process

steps and tasks that can be outsourced to the Expert Web to

solve emergent problems. We demonstrated a novel approach

for estimating expert reputation based on link structure and

trust relations. Trust information is periodically updated to

capture dynamically changing interaction preferences. We

have shown that ExpertHITS can be computed in an online

manner, thereby enabling full personalization at runtime.

Existing approaches in personalized expertise mining al-

gorithm typically perform offline interaction analysis. Our

empirical evaluations have shown that ExpertHITS exhibits

the desired properties; trust and rating weights influence

hub- and authority scores. These properties ensure that our

algorithm discovers experts which are well-connected to

other experts.

In our future work we will evaluate our approach in

real collaboration environments to capture more realistic

interaction data.
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