mn Distributed Systems, WS 2013

Time and Synchronization in Distributed
Systems

Hong-Linh Truong
Distributed Systems Group,
Vienna University of Technology

truong@dsg.tuwien.ac.at
dsg.tuwien.ac.at/staff/truong

DS WS 2013, Last revised: 1
21.10.2013

mn Learning Materials

= Main reading:
= Tanenbaum & Van Steen, Distributed Systems: Principles and
Paradigms, 2e, (c) 2007 Prentice-Hall
= Chapter 6

= Roberto Baldoni, Michel Raynal: Fundamentals of Distributed
Computing: A Practical Tour of Vector Clock Systems. IEEE
Distributed Systems Online 3(2) (2002)
http://www.dis.uniromal.it/~baldoni/baldoni-112865.pdf

= QOthers

= (George Coulouris, Jean Dollimore, Tim Kindberg, ,Distributed
Systems — Concepts and Design®, 2nd Edition

= Chapter 10

= Sukumar Ghosh, Distributed Systems: An Algorithmic
Approach,Chapman and Hall/CRC, 2007, Chapters 6, 7, 11

DS WS 2013 2

mn Outline

» Clock synchronization
= Physical clock
» Logical clock
= Vector Clock

= Distributed coordination
= Mutual exclusion
= | eader election

= Summary

DS WS 2013 3

PHYSICAL CLOCK
SYNCHRONIZATION

DS WS 2013 4

Bl Why do we need clock/time
synchronization?

Documentation\Installation\Regulatory Compliance\NYSE

Em“ The New York Stock Exchange

The New York Stock Exchange has various regulations regarding the synchronization of clocks used for timestamping. particularly in regards to use of the Front End Systemic
Capture (FESC) system.

NYSE Rules 123 and, in particular, 132A detail these requirements. NYSE Information Memo 03-26, June 10, 2003 specifies:

"New Rule 132A requires members to synchronize the business clocks used to record the date and time of any event that the Exchange requires to be recorded. The
Exchange will require that the date and time of orders in Exchange-listed securities to be recorded. The Rule also requires that members maintain the synchronization of
this equipment in conformity with procedures prescribed by the Exchange."

Specific NYSE Time Synchronization Requirements
Rule 132A contains two specific requirements:

* Clocks Synchronized to Commonly Used Time Standard
All computer clocks and mechanical timestamping devices must be synchronized to a commonly used time standard, either the National Institute of Standards and Technology
(NIST) or United States Naval Observatory (USNO) atomic clocks.

* Synchronization must be maintained

Rule 132A also indicates that the member must ensure that their systems remain synchronized. https://WWW.greyware.com/software/domaintime/i

How to Use Domain Time Il to comply with the NYSE Rule 132A Requirements nstructions/quickstart/regulatory-nyse.asp

" Some reasons
= Accountability of processes
= Consistency in processing messages
= Validity of important messages
» Fairness in processing requests

DS WS 2013 5 Liiic

mn Real clock synchronization

Challenging issue: it is impossible to guarantee timers/clocks
In different computers due to the clock drift problem

» Establish/Decide reference physical clocks - to provide
an accurate timing system

= Coordinated Universal Time (UTC)
= Based on atomic time produced by the most
accurate physical clocks using atomic oscillators
= Operate/Utilize accuracy physical clocks providing UTC
time
= Synchronize other physical clocks using time
synchronization algorithms

DS WS 2013 6

I Time provided by real physical
clocks

= Computer clocks/timers
= Every computer has a clock/timer

= Radio clocks receiving time codes via radio
wave

* Radio transmitter connects to an accuracy time
source based on UTC time standard

= GPS (Global Positioning System) - a system of
satellites, each broadcasts

* |ts positions and the time stamps, based on its local
time

DS WS 2013 7

mn Cristian‘s Algorithm

RTT = (t.(4) — t;(4)) — (te(B) — ts(B))
The most simple case: Assume that times

spent in sending messages are the same
and that the processing time at B is O then

A B: reference clock

ts(A)

msg

___________________________________ ' (B) RTT = (£o(4) ~ ts(4))

Based on B's clock the message should
arrive at A at

---------------------------------- te(B) t'.(A) = (t.(B) + RTT/2)

t.(B) A's clock:

te(A)

[msg

RTT
max((t,(4), (t.,(B) + T))

Q1: RTT is varying, how to improve the accuracy?
Q2: Drawbacks of this algorithm?

Q3: Assume we know the minimum time required for sending a message,
Can you estimate the accuracy?

DS WS 2013 8

mn Berkeley Algorithm

Reference time

server

Machine n

Machine i
Machine 1

Tcurrentclock
Tdif f(i)
. Tdif f(i)) = Tcurrentclock(i)
T — Tcurrentclock
k=1(Tdif f (1))

(W R TAIff(D) .|

Vadjustment(i) = S - —Tdif f(i) Tcurrentclock(i)
= Tcurrentclock
+ Tadjustment (i)

DS WS 2013 9

L]
DistRiBUTED SvsTeMs Grovr * o @

mn Berkeley Algorithms

Time daemon

3:00 / 3:00

3:00

@?

»

3:00
Network

&

3:25
(a)

0

=10

O

o

O

&

2:50

3:25

+25

3:05

+15

D

&

&

3:05

()

3:05

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — Principles and Paradigms, 2nd
Edition, 2007, Prentice-Hall

Q: Why it is not good to use it outside LAN?

DS WS 2013

10

55
w_

20

Example: Network Time Protocol
(NTP)

WWW.Ntp.org

Client

Primary NTP
Server

e

Secondary
NTP Server

/

NTP Server

Secondary

Se‘condary
NTP Server

Secondary
NTP Server

TC (e.qg.,
atomic clock,
GPS, ESA
Galileo)

Protocol variants using unreliable communication (UDP):

= Multicast (servers send the time), client/server (similar to
Cristina’s algorithm), symmetric (between high and
lower level server)

DS WS 2013

11

LOGICAL CLOCKS

DS WS 2013 12

mn Logical clocks

* |[n many cases: we do not need an exact
physical timing, as long as we able to maintain

the physical causality

% Update 1 b2 ypdate 2 %

Intention:
| We just need
Update 1 is Replicated database Update 2 is (al,a2) being executed
performed before performed before
update 2 update 1 before (bl,bZ) or

another way around

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems —
Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

Logical clock: using physical causality model for ordering
events among distributed processes

DS WS 2013 13

mn Happen-before relation

Happen-before (=) relation between a and b indicates that
event a occurs before b logically. It is possible that a affects b

F Pl@ @ THEN a—>b

Time

P1

sendTo (P2, msg) a—2>b
IF THEN

P2 receiveFrom (P1, msg)
al ? bl

bl’lPal

concurrent
DS WS 2013 14

mn Lamport's logical clock

» Used to synchronize a logical clock C; of
process P;

Increase the clock before
executing an event

C; + +
PR
P @ @ @
C]++ msg tS=Ci
P @ @ @

Step 1 e :

ep C] = maX(C], ts)
Step 2 C] + +

Step 3: process the message

DS WS 2013 15

mn Example of Lamport‘s logical clock

Without Lamport's logical clock With Lamport's logical clock

Ps Ps Py P P Ps
0 0 0 0 0 0
6l my |8 10 6 m, |8 10
5| >fis Ed 5| {16 E
18 24 m, |30 18 24 m, [30
54 et 54 Elltt)
| 30 140 150 30 | P2 adjusts | 40 50
36 48 60 36 | itsclock |48 (60
............................ S) W
42 561 |70 42 61 ™s |70
48 64 180 48 |69 180
e M (72 20 7oy ™ |77 90
60 80 100 76| p, adjusts|85 100

its clock
(a) (h)\

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

DS WS 2013 16

Bl Message interception and logical
clock adjustment implementation

Application layer

Application sends message \% Message is delivered to application
~ Adjust local clock Adijust local clock Middleware layer
and timestamp message

Middleware sends message Message is received

Source: Andrew S. Tanenbaum and Maarten van

Network /ayer Steen, Distributed Systems — Principles and
Paradigms, 2nd Edition, 2007, Prentice-Hall

Home work: work out on in detail how Lamport's logical
clock could be used for the update problem with replicated

database
DS WS 2013 17

mn Limitation of Lamport‘s logical cloc

P, P, P5

0 0 0 | |recv(m4) < send(m>5):
o—m 181 |19 | Maybe m5is

2
12 ;i/gg dependent on m4
24 %2l m, [a] | (Causally)
30 40| 50
s ;Q/QQ_ Recv (m1) < send
42 61 70
....... ey m4 Lo S (m2)
__48_/._6_9_ 80, '
(70)< ms |77 90| |We do not know their
76 85 100 | relationship
e . ses aven oo e | C(@) < C(b) =!'a > b, We
miss causality information .

DS WS 2013 18

mn Vector Clocks

Goal: a vector clock (VC) allows us to interpret if VC(a) <
VC(b) then a causally precedes b

A process P; maintains a vector clock VC; where
= V(;|i] is the number of events happened in P,

= V(C;|j] = k means that P; knows there were k
events occurred In P; that have causal relation

Implementation
= Each message is associated with a VC

* Foreventaand Db, itis possible that a affects b,

then a.vVC <bh.VC
DS WS 2013 19

msg ts = VCl

Step 1 VC]- [k] = maX(VCj [k]; tS[k])
Step 2 VC][]] + +

Step 3: process the message

DS WS 2013 20

mn Example of vector clocks

0] 1 2| |3 4 9]
-1 I -1 |3 3 3 El
EE B W W W 8§,
R 65
"TEHE EH E - 5| [5]
1 2] /18] |4 5 6| |7
plal 2 2 ! 2] |2 5 5 _H
T fﬂ% e3 el foi e} el
| II— |
16 FH B OVE - | [5
2 R Y N | Y |7
0] 11 2 3 4 /|5 |6
P % — —
gl 62 83 8y & £
Spur_ce: Roberto Bqldo_ni, Micht_el Raynal: Fundamentals of
» Event Local information syeems 16 bistibuted Syatems oniine 32) 2002)

DS WS 2013 21

Sl Applications of logical/vector
clocks

* Replication by using totally order multicast

= atomic multicast in which all members accept
messages in the same order

» Multimedia real-time applications,
teleconferencing using causal multicast

= |f multicast(ml) = multicast(m2), then (m1) must be
delivered before m2 for all processes

DS WS 2013 22

mn Causal broacast example

VC, = (1,0,0) VC, = (1,1,0)
Py I
I:)1
VC, = (1,1,0)
& | 3
VC,=(0,0,00 VC,=(1,0,0)
Note

Upon sending a message P; only increasesVC;|i] by 1
When receiving a message only adjust VC;[k] to max(VC;[k], ts[k])

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

DS WS 2013 23

MUTUAL EXCLUSION

DS WS 2013 24

mn Mutual exclusion in distributed
systems

= Multiple processes might access the same resource

= Mutual exclusion: prevent them to use the resource at the
same time to avoid making resource inconsistent/corrupted

Salary Housing

Payment Payment

Bank Account = Approaches:
= Token-based
= Permission-based

DS WS 2013

mn Centralized Model

Permission-based approach: a deciated server gives permission, emulating
the execution of critical section

}

private static Lock lock =new ReentrantLock();
public void criticalSection(){

System.out.printin("This is a critical section: access only with permission");
System.out.printin("======== | am "+id+" Waiting for the lock===========");
lock.lock();
System.out.printin("l am "+id+" | got the lock now");
System.out.printin(id + " doing some work ");
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
}
System.out.printin("======== | am "+id+" releasing the lock=============");
lock.unlock();

http://www.infosys.tuwien.ac.at/teaching/courses/VerteilteSysteme/exs/CriticalSectionExample.java

DS WS 2013 26

JISTRIBUTED 5 MS R0

mn Centralized Model

)80 Oj0 @ @ (&

Request
Hoalies] 9 < Release

/~ No reply OK
Queue | @ 2
/ empty

Coordinator

(a)
b
(b) (©)

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall

DS WS 2013 27

mn Example

= Avery simple code

= for a single resource using TCP communication

http://www.infosys.tuwien.ac.at/teaching/courses/Ver
teilteSysteme/exs/CentralizedMutualExclusion.java

java java
at.ac.tuwien.dsg.dsexamples.Centr at.ac.tuwien.dsg.dsexamples.
alizedMutualExclusion localhost ~ B CentralizedMutualExclusion

4001 no tuwien localhost 4001 yes null

Q1: What are main problems with this centralized model?

DS WS 2013 28

IS Distributed algorithm (Ricart,

Agrawala, Lamport)
Given a set of processes {P,, P, ..., B, }

If P;wants to access aresource R, P; broadcast a
message msg(R, P;, ts)

If Pj receives msg(R, P;, ts) then
= No Interest, no access - return ,,OK"

= Already access R then does not reply by putting the
msg into the queue

= If already sent msg(R, P;, ts]) but has not accessed R:

= |fts < tsjthen returns ,OK", otherwise put it in queue
If P; gets all OK then it can access the resource after
that it sends an OK to all DiSiibutod Systoms - Pincples and Peradigme, 2nd

Edition, 2007, Prentice-Hall

DS WS 2013 29

mn Example

Accesses

8
‘ resource
(o, (9 o
] - (0
@ Accesses
a e resource
7 2N ()2
OK
12
(a)

(c)
(b)

Source: Andrew S. Tanenbaum and Maarten van Steen,
Distributed Systems — Principles and Paradigms, 2nd
Edition, 2007, Prentice-Hall

DS WS 2013 30

When P; receives the token:

1. Access the resource and release resource and pass
the token

2. Otherwise just pass the token

DS WS 2013 31

ELECTION ALGORITHMS

DS WS 2013 32

mn Leader election

* |[n many situations we need a coordinator
= The coordinator is selected from a set of processes

= Why it is challenging to elect a coordinator?
= Distributed, multiple processes involvement

= Election algorithms
= Designed for electing leaders

= Processes are uniquely identified, e.g., using
process id

= Election process occurs when
= |nitiating the systems, existing coordinator failed, etc.

DS WS 2013 33

mn Bully algorithm

Lower rank processes Higher rank processes

coordinator

1900 6

——

COORDINATOR

DS WS 2013 34

Previous coordinator
has crashed

OK
. Source: Andrew S.
@ %) @(Coordinator Tanenbaum and Maarten
van Steen, Distributed

Systems — Principles and
Paradigms, 2nd Edition,
2007, Prentice-Hall

DS WS 2013 35

ﬂﬂ Ring algorithm

* From Le Lann, Chang and Roberts

= Processes are organized into a ring, initially ,non-
participant” in the election

= Election message (ELECTION) and elected message
(COORDINATION)

» Messages are forwarded or created and sent clockwise

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems — Principles and Paradigms, 2nd
Edition, 2007, Prentice-Hall

George Coulouris, Jean Dollimore, Tim Kindberg, ,Distributed Systems — Concepts and Design*, 2nd Edition,
Chapter 10

Nancy A Lynch, Distributed Algorithms, 1996, Chapter 3.

DS WS 2013 36

MIEI Ring algorithm

{Pmax}
ELECTION

un-parti participa

{Pi}> {Pivi}

{Pmax}

un-participant ~ Un-participant

Pma Pma-X}> {Pk} {Pk}> {Pl} u"”

{Pmax}

DS WS 2013

participant ..., ‘
{P k} ticipant
Dectect the I&r\ participan

Q1: if P, receives another ELECTION
message with a smaller identifier after
becoming participant, what should it do?

DisTRIBUTED SysTems Groue *

mﬂ Ring algorithm

DS WS 2013

COORDINATION Message

{Pmax}

Non-participan
Dectect the leader e

00

.
*
.
.
.
.*
.*

Non-participant

{Pmax}

mn Simple Flooding Algorithm

Assumption: processes are structured into a directed graph

Steps

* P maintains the maximum unigue process
identifier (UID) it knows

= At around, each P sends this UID to all nodes in
Its outgoing edges

= After n rounds, If a process P sees its ID equal
to the maximum UID, then the process becomes
the leader

Source: Nancy A Lynch, Distributed Algorithms, 1996, Chapter 4.

DS WS 2013 39

mn Summary

* Time synchronization is important in real-world
= But complex problem in distributed systems
= Different algorithms with different pros and cons

» |ogical clocks are useful in many situations
= Happen-before or physical causality is the main

principle

= Distributed coordination needs both mutual

exclusion and election mechanism

= Dont forget to analyze algorithms to understand
their pros and cons

DS WS 2013 40

T
Thanks for
your attention

Hong-Linh Truong

Distributed Systems Group
Vienna University of Technology
truong@dsg.tuwien.ac.at
http://dsg.tuwien.ac.at/staff/truong

DS WS 2013 41

