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Learning Materials

 Main reading:

 Tanenbaum & Van Steen, Distributed Systems: Principles and 

Paradigms, 2e, (c) 2007 Prentice-Hall

 Chapter 6

 Roberto Baldoni, Michel Raynal: Fundamentals of Distributed 

Computing: A Practical Tour of Vector Clock Systems. IEEE 

Distributed Systems Online 3(2) (2002) 

http://www.dis.uniroma1.it/~baldoni/baldoni-112865.pdf

 Others

 George Coulouris, Jean Dollimore, Tim Kindberg, „Distributed 

Systems – Concepts and Design“, 2nd Edition

 Chapter 10

 Sukumar Ghosh, Distributed Systems: An Algorithmic 

Approach,Chapman and Hall/CRC, 2007, Chapters 6, 7, 11
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PHYSICAL CLOCK

SYNCHRONIZATION
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Why do we need clock/time 

synchronization?
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 Some reasons

 Accountability of processes

 Consistency in processing messages

 Validity of important messages

 Fairness in processing requests

https://www.greyware.com/software/domaintime/i

nstructions/quickstart/regulatory-nyse.asp



Real clock synchronization

 Establish/Decide reference physical clocks  to provide 

an accurate timing system

 Coordinated Universal Time (UTC)

 Based on atomic time produced by the most 

accurate physical clocks using atomic oscillators

 Operate/Utilize accuracy physical clocks providing UTC 

time 

 Synchronize other physical clocks using time 

synchronization  algorithms

DS WS 2013 6

Challenging issue: it is impossible to guarantee timers/clocks 

in different computers due to the clock drift problem



Time provided by real physical 

clocks

 Computer clocks/timers

 Every computer has a clock/timer

 Radio clocks receiving time codes via radio 

wave

 Radio transmitter connects to an accuracy time 

source based on UTC time standard 

 GPS (Global Positioning System) - a system of 

satellites, each broadcasts 

 its positions and the time stamps, based on its local 

time 
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Cristian‘s Algorithm
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msg

max((𝑡𝑒 𝐴 , (𝑡𝑒 𝐵 +
𝑅𝑇𝑇

2
))

𝑅𝑇𝑇 = (𝑡𝑒 𝐴 − 𝑡𝑠(𝐴)) − (𝑡𝑒(𝐵) − 𝑡𝑠(𝐵))
A B: reference clock

𝑡𝑠(𝐴)

𝑡𝑒(𝐴)

𝑡𝑒(𝐵)

msg 𝑡𝑒(𝐵)

𝑡𝑠(𝐵)

The most simple case: Assume that times 

spent  in sending messages are the same 

and that the processing time at B is 0 then

𝑅𝑇𝑇 = (𝑡𝑒 𝐴 − 𝑡𝑠(𝐴))

𝑡′𝑒 𝐴 = (𝑡𝑒 𝐵 + 𝑅𝑇𝑇/2)

Based on B‘s clock the message should 

arrive at A at

Q1: RTT is varying, how to improve the accuracy? 

Q2: Drawbacks of this algorithm?

Q3:  Assume we know the minimum time required for sending a message, 

Can you estimate the accuracy?

A‘s clock: 



Machine n

Machine j

Berkeley Algorithm
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Reference time 

server

Machine 1

𝑇𝑑𝑖𝑓𝑓(𝑖))

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑙𝑜𝑐𝑘

𝑇𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑖 =
 𝑘=1
𝑛 𝑇𝑑𝑖𝑓𝑓(𝑖))

𝑛
− 𝑇𝑑𝑖𝑓𝑓(𝑖)

 𝑘=1
𝑛 (𝑇𝑑𝑖𝑓𝑓(𝑖))

𝑛

𝑇𝑑𝑖𝑓𝑓 𝑖
= 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑙𝑜𝑐𝑘 𝑖
− 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑙𝑜𝑐𝑘

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑙𝑜𝑐𝑘 𝑖
= 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑙𝑜𝑐𝑘
+ 𝑇𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡(𝑖)



Berkeley Algorithms

Q: Why it is not good to use it outside LAN?

DS WS 2013 10

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd 

Edition, 2007, Prentice-Hall 



Example: Network Time Protocol 

(NTP)

www.ntp.org
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Secondary 

NTP Server

Primary NTP

Server

Secondary 

NTP Server

Secondary 

NTP Server

Secondary 

NTP Server

Client UTC (e.g., 

atomic clock, 

GPS, ESA 

Galileo)

Protocol variants using unreliable communication (UDP): 

 Multicast (servers send the time), client/server (similar to 

Cristina’s algorithm),  symmetric (between high and 

lower level server)



LOGICAL CLOCKS

DS WS 2013 12



Logical clocks

 In many cases: we do not need an exact 

physical timing, as long as  we able to maintain 

the physical causality 
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Logical clock: using physical causality model for  ordering 

events among distributed processes

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems –

Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 

a1

a2

b1

b2

Intention: 

We just need

(a1,a2) being executed 

before (b1,b2) or 

another way around



P1

Happen-before relation

DS WS 2013 14

Time

a b a  b

P1

a

P2

b

sendTo (P2, msg)

receiveFrom (P1, msg)

a1

b1

IF THEN

IF THEN

a  b

a1 ? b1

b1 ? a1

concurrent

Happen-before () relation between a and b indicates that

event a occurs before b logically. It is possible that a affects b



Lamport‘s logical clock
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𝐶𝑖 ++

𝑃𝑖

𝑃𝑗

𝐶𝑗 ++

𝐶𝑖 ++

msg𝑃𝑖 𝑡𝑠 = 𝐶𝑖

Step 1

Step 2

Step 1 𝐶𝑗 = max 𝐶𝑗 , 𝑡𝑠

𝐶𝑗 ++Step 2

Step 3: process the message

Increase the clock before

executing an event

 Used to synchronize a logical clock 𝐶𝑖 of 

process 𝑃𝑖



Example of Lamport‘s logical clock
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Without Lamport‘s logical clock With Lamport‘s logical clock

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 



Message interception and logical 

clock adjustment implementation
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Source: Andrew S. Tanenbaum and Maarten van 

Steen, Distributed Systems – Principles and

Paradigms, 2nd Edition, 2007, Prentice-Hall 

Home work: work out on in detail how Lamport‘s logical 

clock could be used for the update problem with replicated 

database



Limitation of  Lamport‘s logical clock

recv(m4) < send(m5):

Maybe m5 is 

dependent on m4 

(causality)

Recv (m1) < send 

(m2):

We do not know their 

relationship
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C(a) < C(b)  =! a  b, We 

miss causality information

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed 

Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 



Vector Clocks

A process 𝑃𝑖 maintains a vector clock 𝑉𝐶𝑖 where

 𝑉𝐶𝑖 𝑖 is the number of events happened in 𝑃𝑖
 𝑉𝐶𝑖 𝑗 = 𝑘 means that 𝑃𝑖 knows there were k 

events occurred in  𝑃𝑗 that have causal relation 

with 𝑃𝑖
Implementation

 Each message is associated with a 𝑉𝐶

 For event a and b, it is possible that a affects b, 

then a.VC <b.VC 
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Goal: a vector clock (VC) allows us to interpret if VC(a) < 

VC(b) then a causally precedes b



Vector Clocks
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𝑉𝐶𝑖 𝑖 + +

𝑃𝑖

𝑃𝑗
𝑉𝐶𝑗 𝑗 + +

𝑉𝐶𝑖 𝑖 + +

msg𝑃𝑖 𝑡𝑠 = 𝑉𝐶𝑖

Step 1

Step 2

Step 1 𝑉𝐶𝑗 𝑘 = max 𝑉𝐶𝑗 𝑘 , 𝑡𝑠 𝑘

𝑉𝐶𝑗 𝑗 + +Step 2

Step 3: process the message



Example of vector clocks
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Source: Roberto Baldoni, Michel Raynal: Fundamentals of 

Distributed Computing: A Practical Tour of Vector Clock 

Systems. IEEE Distributed Systems Online 3(2) (2002) 



Applications of logical/vector 

clocks

 Replication by using totally order multicast 

 atomic multicast in which all members accept 

messages in the same order

 Multimedia real-time applications, 

teleconferencing using causal multicast

 If multicast(m1)  multicast(m2), then (m1) must be 

delivered before m2 for all processes
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Causal broacast example

DS WS 2013 23

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 

Note

Upon sending a message 𝑃𝑖 𝑜𝑛𝑙𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠𝑉𝐶𝑖 𝑖 𝑏𝑦 1
When receiving a message only adjust 𝑉𝐶𝑗 𝑘 𝑡𝑜max( 𝑉𝐶𝑗 𝑘 , 𝑡𝑠[𝑘])



MUTUAL EXCLUSION
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Mutual exclusion in distributed 

systems
 Multiple processes might access the same resource

 Mutual exclusion: prevent them to use the resource at the 

same time to  avoid making resource inconsistent/corrupted
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Bank Account

Salary 

Payment

Housing 

Payment

Overdue 

Check

 Approaches:

 Token-based

 Permission-based



Centralized Model
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Permission-based approach: a deciated server gives permission, emulating 

the execution of critical section

private static Lock lock =new ReentrantLock();

public void criticalSection(){

System.out.println("This is a critical section: access only with permission");

System.out.println("======== I am "+id+" Waiting for the lock===========");

lock.lock();

System.out.println("I am "+id+" I got the lock now");

System.out.println(id + " doing some work  ");

try {

Thread.sleep(5000);

} catch (InterruptedException e) {

}

System.out.println("======== I am "+id+" releasing the lock=============");

lock.unlock();

}

http://www.infosys.tuwien.ac.at/teaching/courses/VerteilteSysteme/exs/CriticalSectionExample.java



Centralized Model
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Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 



Example

 A very simple code

 for a single resource using TCP communication

 http://www.infosys.tuwien.ac.at/teaching/courses/Ver

teilteSysteme/exs/CentralizedMutualExclusion.java
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Q1: What are main problems with this centralized model?

java 

at.ac.tuwien.dsg.dsexamples.Centr

alizedMutualExclusion localhost

4001 no tuwien

java 

at.ac.tuwien.dsg.dsexamples.

CentralizedMutualExclusion

localhost 4001 yes null



Distributed algorithm (Ricart, 

Agrawala, Lamport)
Given a set of processes {𝑃1, 𝑃2, …, 𝑃𝑛}

If 𝑷𝒊wants to access a resource R, 𝑷𝒊 broadcast a 

message msg(R, 𝑷𝒊, ts)

If 𝑷𝒋 receives msg(R, 𝑷𝒊, ts) then

 No interest, no access  return „OK“

 Already access R then does not reply by putting the

msg into the queue

 If already sent msg(R, 𝑃𝑗, tsj) but has not accessed R:  

 If ts < tsj then returns „OK“, otherwise put it in queue

If 𝑷𝒊 gets all OK then it can access the resource after 

that it sends an OK to all
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Source: Andrew S. Tanenbaum and Maarten van Steen, 

Distributed Systems – Principles and Paradigms, 2nd 

Edition, 2007, Prentice-Hall 



Example
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Source: Andrew S. Tanenbaum and Maarten van Steen, 

Distributed Systems – Principles and Paradigms, 2nd 

Edition, 2007, Prentice-Hall 



Ring algorithm
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𝑃0

𝑃1𝑃𝑘−1

𝑃..

𝑃𝑖

𝑃…

𝑃..

token

When 𝑃𝑖 receives the token:

1. Access the resource and release resource and pass 

the token

2. Otherwise just pass the token



ELECTION ALGORITHMS
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Leader election

 In many situations we need a coordinator

 The coordinator is selected from a set of processes

 Why it is challenging to elect a coordinator?

 Distributed, multiple processes involvement 

 Election algorithms

 Designed for electing leaders

 Processes are uniquely identified, e.g., using 

process id

 Election process occurs when

 Initiating the systems, existing coordinator failed, etc.
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Bully algorithm
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𝑃𝑖

𝑃𝑘

𝑃𝑙

𝑃𝑚 Ps

𝑃𝑎

𝑃𝑏

𝑃𝑔

…

Lower rank processes Higher rank processes

ELECTION (1)

OK (1)

coordinator

ELECTION (2)

COORDINATOR



Example
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Source: Andrew S. 

Tanenbaum and Maarten 

van Steen, Distributed 

Systems – Principles and

Paradigms, 2nd Edition, 

2007, Prentice-Hall 



Ring algorithm

 From  Le Lann, Chang and Roberts

 Processes are organized into a ring, initially „non-

participant“ in the election

 Election message (ELECTION) and elected message 

(COORDINATION)

 Messages are forwarded or created and sent clockwise
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Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd 

Edition, 2007, Prentice-Hall 

George Coulouris, Jean Dollimore, Tim Kindberg, „Distributed Systems – Concepts and Design“, 2nd Edition, 

Chapter 10

Nancy A Lynch, Distributed Algorithms, 1996, Chapter 3.



Ring algorithm
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𝑃𝑖 {𝑃𝑖}

{𝑃𝑖}

𝑃𝑖+1𝑃𝑖−1

𝑃𝑘
{𝑃𝑘}

𝑃𝑚𝑎𝑥

𝑃…

𝑃..

ELECTION

{𝑃𝑚𝑎𝑥}

{𝑃𝑚𝑎𝑥}

un-participant

{𝑃𝑖}> {𝑃𝑖+𝑖}

un-participant

{𝑃𝑘}> {𝑃𝑖}

participant

un-participant

{𝑃𝑚𝑎𝑥}> {𝑃𝑘}

{𝑃𝑚𝑎𝑥}

{𝑃𝑚𝑎𝑥}

{𝑃𝑚𝑎𝑥}

Dectect the leader

participant

participant

Q1: if 𝑃𝑘 receives another ELECTION 

message with a smaller identifier after 

becoming participant, what should it do?



COORDINATION Message

Ring algorithm
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𝑃𝑖

𝑃𝑖+1𝑃𝑖−1

𝑃𝑘

𝑃𝑚𝑎𝑥

𝑃…

𝑃..

{𝑃𝑚𝑎𝑥}

{𝑃𝑚𝑎𝑥}

{𝑃𝑚𝑎𝑥}

{𝑃𝑚𝑎𝑥}

Dectect the leader

Non-participant

Non-participant



Simple Flooding Algorithm

Steps

 P maintains the maximum unique process 

identifier (UID)  it knows

 At a round, each P sends this UID to all nodes in 

its outgoing edges

 After n rounds,  if a process P sees its ID equal 

to the maximum UID, then the process becomes 

the leader
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Source: Nancy A Lynch, Distributed Algorithms, 1996, Chapter 4.

Assumption: processes are structured into a directed graph



Summary

 Time synchronization is important in real-world

 But complex problem in distributed systems

 Different algorithms with different pros and cons

 Logical clocks are useful in many situations

 Happen-before or physical causality is the main 

principle

 Distributed coordination needs both mutual 

exclusion and election mechanism 

 Dont forget to analyze algorithms to understand 

their pros and cons
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Thanks for 
your attention

Hong-Linh Truong

Distributed Systems Group

Vienna University of Technology

truong@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at/staff/truong
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