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i. Introduction 

The design of an interprocess communication 
mechanism (IPCM) usually starts wlth a description 
of the desired behavior of the system and the ser- 
vices to be provided. In selecting the features to 
be incorporated into the IPCM, the greatest amount 
of care is required, for these features are inter- 
dependent to a great degree, and it is crucial that 

the design process start with a complete, detailed 
specification of the system to be designed, with 
the consequences of each decision fully explored 
and understood. The temptation of piecemeal de- 
sign is to be avoided at all costs. 

The major aim of the paper is to point out 
the interdependence of the features to be incorpor- 
ated in the system. In some cases, the incompat- 
ibility between certain features is direct and 
obvious. But often two features which look quite 
independent turn out to affect one another, and 
these are the more interesting cases. Unless the 
trade offs involved are explored at the outset, it 
is possible to find oneself 'locked out' of 
certain desirable features, because of unforeseen 
implications of an earlier decision. Though 
certain combinations of alternatives are outright 
incompatible, there are also cases where two fea- 
tures can both be accomodated, but at the expense 
of somebasic design principle. This often 
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results In some horrendous code 'patched' into the 
system, and much elegance is lost. The resulting 
system is harder to implement, verify, understand, 
debug, and maintain. Theseare the questions 
which extract a "well, we didn't actu~implement 
it that way," response fro~ system deslgners. 

Unfortunately, wlth few exceptions [6, 10, 15], 
there is little guldance to be found in the pub- 
lished literature on this Importantpolnt - how to 
arrive at a consistent and elegant design. This 
paper is a modest attempt to help fill this gap. 
The paper wlll addressltself to generalconcepts 
rather than to the specifics of a particular de- 
sign, although it was Influenced to aconslderable 
degree by the experience gained in the design and 
implementation of the Stony Brook System [2]. A 
brief description of this system is given next to 
provide a context for the discussion. 

I.I The Stony Brook System (SBS) • 

SBS is intended to function both as a stand 
alone system and as a node in a. network. The aim 
was to obtain a design which was simple and elegant 
in both environments. Also the overhead due to the 
network operation was to be minimal. 

In order to localize the effects of changes in 
the network, the Remote Executive (REX) is designed 
as a separate module and forms the sole interface 
to the network. The basic IPC Is simple and sup- 
ports only direct communication between local 
processes. 

Processes wishing to communicate across the 
network cannot establish direct connections and 
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must go through indirect paths. On the other hand 
users are primarily interested in the communica- 
tion between the (logical) sender and receiver of 
a message. 

In order to reconcile these seemingly contra- 
dictory goals (i.e. to have an IPCMwhich knows 
only about direct connections and users who are 
only interested in logical connections) SBS uses 
a strategy which amounts to building a network 
communication facility consisting of intermediate 
processes. These intermediate processes are not 
part of the basic IPC of any site. They are in- 
serted in the communication path through the 
directory or broker process when a connection is 
set up. The intermediate processes are the only 
ones to know about the indirect nature of the 
communications which involve them. The key to 
making this strategy work is a Judicious choice of 
the set of primitives of the simple local IPCM. 
For example, the basic system can only provide 
status information about the outcome of a direct 
transaction, whereas the user needs information 
about the logical message. To bridge this gap, 
the IPCM allows a 'delayed status return', which 
is used by the intermediate process to supply the 
status only when it finds out the ultimate outcome. 
The primitives used by REX and other system pro- 
cesses are also available to any user. In addition 
to keeping the system simple, this philosophy en- 
sures a powerful and flexible communication 
facility. 

1.2 Features to be Considered 

We begin with an informal description of the 
major features to be discussed. 

Port___s Processes communicate through ports [3, 15] 
which may be thought of as abstract connections. 
A transaction takes place only when both parties 
indicate their willingness through a "rendezvous" 
at the port. (In some cases, the initialization 
of this procedure presents certain problems 
whose solution is not trivial.) 

Sequential Processes In keeping with the modern 
trend [7, Ii] We assume that all processes are 
sequential. 

Messages In a network which consists of disparate 
machines it is very desirable to deal with mes- 
sages at the logical level. It is then easier 
to ship a message across the boundary between two 
machines with different word sizes and differing 
resources. This may be achieved, for instance, 
as a series of partial transfers without taxing 
the capabilities of the smaller machines. The 
participants need only be awakened when the whole 
transaction is complete. 

System Bufferin$ As this is awkward to implement 
with certain architectures, (e.g. on the PDP-15 
on which SBS was Implemented each process has to 
run within a contiguous block of core) we shall 
confine ourselves to systems which do not provide 
this facility. 

Time-Outs In practice, the system can only re- 
tain information for a limited time; undelivered 
or partially fulfilled messages are timed out and 
deleted. A subsidiary question is whether the 

system also forgets about the status of messages 
that are timed out. Time-outs affect each of these 
situations differently and we shall consider each 
case in its context. Also sequential processes re- 
quire time-outs, otherwise they would be forced to 
wait forever for a message which was never sent - a 
situation which is likely to arise in a network 
environment. 

Status Information One of the facilities provided 
by a well-designed IPCM is to return information 
to the participants of a transaction as to its out- 
come. This status return faeilityis quite burden- 
some, especially in computer networks, and it was 
proposed [14] to eliminate it altogether in such 
situations. Although this would result in consid- 
erable simplification, it can beshown (see 
appendix) that if the system itselfdidnot provide 
this facility, there is theoretically no protocol 
that the users themselves may devise to fill this 
gap and totally eliminate their anxiety [1]. At 
any rate, much of this paper is devoted to the lim- 
itatlons of what the system itself can and cannot 
do in this respect. 

Well-Known Ports Modern operating systems which 
provide sophisticated communication facilities, 
usually take advantage of this capability to imple- 
ment certain system functions. This increases 
modularity since such functions (e.g. file direc- 
tory) can then be prevented from being buried deep 
into the system and can operate (more or less) as 
the user processes. They are then easier to debug, 
modify and tune up. The problem is that such 
processes must participateln communications with 
many others without having prior knowledge of the 
identity of their partner. This communication 
occurs through well-known ports which must at all 
costs be protected from malfunction. Undebugged or 
malicious user processes have to be prevented from 
interfering with the operation of well-known ports. 

Insertion Property Computer networks seldom main- 
tain the same configuration over extended periods. 
If a user process has to resort to a different 
protocol with every change a program which ran one 
day may not run the next. It is therefore desir- 
able to insulate user programs as much as possible 
from such variations. This increasesportability 
and flexibility. In this paper we dlscussan ex- 
treme approach, namely the insertion property, [4] 
which makes all intermediate processes inserted 
between the two main participants totally invisible 
to them - a useful feature to have in a network. A 
less extreme and more practical version of the in- 
sertion property is also discussed, where the aim 
is not so much to prevent a process from detecting 
the presence of an intermediate process, but to 
enable a process to operate in the same manner in 
either case. 

2. Centralized vs. Distributed Systems 

2.1 Centralized Communication Facility 

A centralized facility is characterized by the 
presence of a single agent who has the complete 
state information pertinent to a communication. 
Further such an agent will be able to change the 
state of a system in a well-defined manner. For 
example the IPCM (which is the centralized agent) 
may match SEND and RECEIVE requests of two 
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processes, transfer the data between their buffers 
and provid e appropriate status to both. Each of 
these processes is then assured that the status 
received by the other process was consistent with 
the information it received. Though it is possible 
that the IPCM may crash during the state change, 
in practice, it is the heart of an operating system 
and if it crashes there will be no further interest 
in the resulting state of the system. We shall 
ignore such cases in our discussion. 

2.2 DiStributed Communication Facility 

A distributed facility is one in which there 
is no single agent who knows the complete state at 
any time. The IPCM is composed of several inde- 
pendent components which have to coordinate and 
exchange the parts of state information each has. 
As a consequence there is potential delay in ef- 
fecting a global change. Further, if one of the 
components of a distributed facility crashes we 
shall still be interested in the activity of the 
rest of the components. As an example (Figure i), 
consider the two processes Fl and P2 on two differ- 
ent machines communicating through a network. 

\ / k / 
V 

Machine 1 Machine 2 

Figure I. 

The process P can be thought of as an interface 
between the two machines parts of which lle on 
each machine. The details of handling the network 
lines (which are not shown in the figure but are 
assumed to be absorbed in P) are managed by this 
interface. If one machine or a communication llnk 
crashes, we want the surviving IPCM's to continue 
their operation. At least one component should 
detect a failure and be able to communicate. (In 
the case of a communication llnk failure, both 
ends must know.) Note that a star configuration 
of many machines where the central node handles 
all Inter-machlne requests is distributed, assum- 
ing that the central node does not know the states 
of all processes on the peripheral nodes at any 
time. 

Distributed communication can take place even 
in a stand-alone system if there are one or more 
intermediate processes taking part in a communi- 
cation. The situation wo~dbe similar to Figure 1 
except that since P, P1 and P2 are now all on the 
same machine, IPCMi and IPCM2 are also the same. 
The main parties to the communication are P1 and 
P2, P being an intermediate process which performs 
some service, say translationand/or monitoring 
of messages in both directions. Each transaction 
between P1 and P2 consists of 2 steps (PI to P and 
P to P2) which would normally be treated as inde- 
pendent transactions by the IPCM. For instance, 
the status returned to P1 would reflect only the 
outcome of the transaction between P1 and Pal- 

though P1 is really interested in the eventual fate 
of its communication with P2. This means that if 
Fl (and P2) are to receive status information about 
the success/failure of the overall communication 
then PI, P2 and P must devise a fairly elaborate 
protocol. A solution wh/ch avoids these complications 
is the facility to ask for a delay in status as part 
of the RECEIVE primitive. This new RECEIVE & DELAY 
STATUS primitive has the effect that status return 
to the sender does not occur immediately upon the 
transmission but only when the receiver issues a 
SEND STATUS primitive. In the above example (assum- 
ing a message going from P1 to P2) P would use this 
facility to receive data from P1. It would then go 
ahead and relay the data to P2. Subsequently, when 
P itself obtains the status of this second step, it 
can issue the appropriate status to P1 through a 
SEND STATUS primitive. 

2.3 Special Cases of Distributed Facility 

We first eliminate a few pathological 
situations. 

FACT 0: A perfectly reliable distributed 
system can be made to behave as a central- 
ized system. 

Intuitively, this is because the relevant 
state information which is distributed in several 
components is generally accessible. For the system 
to behave as a centralized system it is enough if 
the component IPCM at one end of a communication 
path knows the fate of a message at the other end. 
This can be achieved by an exchange of status in- 
formation between the two IPCM's (through reliable 
co~mnunication). 

In practice, it is unreasonable to expect 
perfect reliability of the communication links 
connecting the various components of the IPCM's. It 
is possible to relax this requirement, and we state 
without proof: 

FACT I: A distributed IPCM can be made to 
simulate a centralized system provided that 

(1) the overall system remains connected 
at all times, and 
(2) when a communication link fails, the 
component IPCM's that are connected to it 
know about it, and 
(3) the mean time between two consecutive 
failures is large compared to the mean 
transaction time across the network. 

In view of Fact 0, it is enough to show that 
reliable co~mnunication can be achieved under the 
above conditions. The informal Justification is 
as follows: Link failure detection enables the 
nodes to adopt a scheme in which one and only one 
copy of an undelivered message is retained at any 
time. Thus an undelivered message cannot be lost 
and disappears from the network when delivered. 
Condition (1) ensures that there will always be a 
path from any node to another. A proper failure 
rate (condition(3)) together with the choice of a 
suitable routing strategy ensures that a message 
moving around within a subset of nodes in the 
network (while the target node is outside this 
subset) has to get out of the subset in finite 
time and this guarantees that the message even- 
tually reaches the target. Precise bounds on the 
failure rate can be computed for any given routing 
strategy. One (rather inefficient) strategy, for 
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example, is that each time a message comes back to 
an intermediate node, it tries to send it through 
the oldest link on which the same message was sent 
before, so that each possible path is tried ulti- 
mately. 

Both of the cases described above represent 
rather special situations because 

(a) they involve inefficient and compli- 
cated algorithms, 
(b) practical systems have other features 
such as time-out, which complicate matters, 
and 
(c) the property of connectedness may be 
violated, in that the failure of a single 
link may result in two disconnected com- 
ponents. 

In the following discussion, we consider distribu- 
ted systems in general. 

3. Status in Distributed Systems 

3.1 Complete Status 

Ideally, the status supplied to a process 
should specify completely the final outcome of a 
transaction (i.e. whether the message reached the 
destination). Such a status is called complete. 
If a system provides complete status to both pro- 
cesses, then the two parties not only know the ul- 
timate fate of the transaction, but also know that 
they are in agreement as to what exactly happened. 
While it is possible to achieve complete status in 
a centralized system with reasonable assumptions, 
we now show that this is not the case in a distri- 
buted system where many compromises have to be 
made. 

FACT 2: In an arbitrary distributed facil- 
ity, it is impossible to provide complete 
status. 

Two examples in which complete status cannot 
be provided are given below. 

Assume first that condition (I) of FACT i is 
violated and at some time the network splits into 
two disjoint systems leaving two component IPCM's 
(IPCMi and IPCM2) disconnected. If, at that time, 
IPCMi was awaiting the outcome of a transaction 
(involving IPCM2) in progress, there is no way 
IPCMi can provide complete status to the local 
party to the transaction. 

Consider next a violation of condition (2) 
of FACT I and again a transaction involving IPCMI 
and IPCM2 (Figure 2). 

IPCMi 

IPCMi cannot provide 
is informed by IPCM2 

Network ~ ~  

IPCM2 

Figure 2. 
complete status to Pi until it 
about the fate of the trans- 

action at the other end. But this status, supplied 
by IPCM2 itself uses unreliable communication paths. 
Therefore, IPCM2 cannot be sure that the status 
reached IPCMi, unless it gets an acknowledgement 
message, etc. This leads to an infinite exchange 
of messages between the two IPCM's. A more formal 
proof of this result is given in [i]. 

3.2 Time-outs 

In practice unfulfilled requests of processes 
are timed out and the processes are notified. 
Furthermore, the system itself is usually limited 
by finite resources such as table space, etc., 
which hold control information in handling requests, 
so that it cannot afford deadlock situations which 
might arise as a result of a chain of requests 
waiting one for the other. A time-out mechanism is 
useful in breaking such chains. Next, we show that 
such considerations may prevent complete status, 
even if the system is totally reliable. 

FACT 3: In a distributed system with time- 
outs, it is impossible to provide complete 
status (even if the system is absolutely 
reliable). 

This can be shown by an example. Suppose 
(Figure 3) Pi sends some data to P2 through a chain 
of distributed components as shown. If after Ii 
has taken the data from Pi but before the status 
information has returned, Pl's request times out, 
what status shall be returned to Pi? 

Figure 3. 

IPCMi has no knowledge of the final outcome of the 
transmission (the data may or may not have reached 
P2), indeed P2 may not be willing to receive it. 
Whatever status IPCMi returns to Pi it may prove to 
be incorrect. Hence complete status to both par- 
ties is imp~slble. PI has to be told of the un- 
certainty. Thus uncertain status is inevitable at 
times in a distributed facility with time-outs. 

3.3 Insertion Property 

An IPCM is said to possess the insertion pro- 
perty if it is possible to deign an intermediate 
process P as in Figure 4b which remains invisible 
to PI and P2; for any pair of primitives Pi and P2 
issue, they should get the same status they would 
have obtained were they directly connected as in 
Figure 4a. Such intermediate processes are useful 
in network interfaces; they can do code transla- 
tions etc., without bothering the two processes, 
Pi and P2. 

©,,, o Q 
Figure  4a. 

70 



Figure 4b. 

However the insertion property imposes addi- 
tional constraints on the status that can be sup- 
plied as shown below. 

FACT 4: In a distributed system with time- 
outs, the insertion property can be possess- 
ed only if the IPCM withholds some status 
information that is known to it. 

To justify this we make the following observa- 
tions. It is obvious that delayed status is nec- 
essary if the insertion property is to hold and the 
configurations in Figures 4a and 4b are to behave 
the same way. Consider the case of a message sent 
from P1 to P2. Once the data is read by P, P1 
enters a state called awalt-status. If this await- 
status times out (before P could learn what happen- 
ed to the data) what status can be provided to Pi? 

Clearly, he cannot be told of the eventual 
outcome since that information is not available yet. 
On the other hand we cannot very well tell him that 
he was awaiting status, which would imply that his 
message was received by someone. But what if the 
message never reaches as far as P2? This violates 
the insertion property since a comparable situation 
is not possible in Figure 4a. 

If instead PI was told that its original re- 
quest was timed out, this again violates the inset- - 
tlon property because P2 may in fact have received 
the data and this does not happen in the situation 
of Figure 4a. 

The only other way is to give an ambiguous 
status to Pi, which leaves him in doubt as much as 
it would have, were P1 and P2 directly connected. 
One such scheme is to introduce a new status to 
cover the situation. Furthermore, this status 
must arise at least in one situation in which the 
two processes are directly connected. Thus, a 
deliberate suppression of what happened is intro- 
duced by providing the same status to cover a 
tlme-out which occurs while awaiting status and, 
say, a transmission error. If, in addition, it is 
stipulated that a RECEIVE request always delays 
status to the sender, then the insertion property 
may be achieved. Thus if Pl gets such an ambig- 
uous status, he does not know whether a transmission 
failure occurred or his awalt-status timed out. 
Both these situations are possible in Figures 4a 
and 4b. Inany case P1 has to conclude that P2 
may or may not have received the data. 

Thus the IPCM is forced to hide information on 
purpose to preserve the insertion property under 
the above conditions. 

4. Logical and Physical Messages 

The basic function of an IPCM is the transfer 
of data between two or more processes and the 
synchronization of those processes. To effect this 

synchronization, the data may be thought of as 
being divided into messages, regardless of whether 
the IPCM itself is '~essage oriented" or "connec- 
tlon oriented". 

Because of various limitations imposed by 
either the IPCM or the programs themselves, it may 
be necessary to divide messages into several units 
each of which may be sent through the IPCM as the 
result of a single operation. The sizes of these 
units depend on the buffer sizes of the processes 
involved in communication. 

4.1 Buffer Size Considerations 

At a relatively early point in the design of 
any IPCM which provides no system buffering, a 
decision must be made as to the course to be fol m 
lowed in the case of unmatched buffer sizes, as 
shown in Figure 5. 

G SEND 50 ~RECEIVE 1 0 0 Q  

Figure 5. 

The problem can of course be avoided by setting a 
system-wlde standard buffer size. But this is too 
restrlctiye in a network of heterogeneous systems. 
If a mismatch is to be tolerated one approach is 
to satisfy the request with smaller buffer size and 
tell both parties what happened. This strategy is 
unattractlvebecause it forces the processes to 
deal with the low level details of communication. 
(It also violates the insertion property.) 

A more attractive solution is the design which 
allows for p~tlaltransfers. In such a design the 
information specified in the smaller request (50 
words in the example) is tran~erred and only the 
process which issued the smaller request is awaken- 
ed. The other process remains asleep awaiting 
further transfers. An end of message (EOM) indi- 
cator is also required to wake up the receiver even 
when its buffer is not full. 

If a system is to support partial transfers, 
time-outs and the insertion property simultaneously 
there is a problem: suppose that the RECEIVE 
request in our example times out after receiving 
the first 50 words. Telling the process how much 
information is present in its buffer violates the 
insertion property so that we would have to return 
an uncertain status in this case. This is but one 
example of a situation which arises often in a sys- 
tem with partial transfers: a reasonable strategy 
would violate the insertion property by divulging 
the buffer size. We therefore propose a weak 
insertion property, where the availability of 
buffer size information is tolerated. This re- 
tains most of the advantages of the strict inser- 
tion property since only programs which explicitly" 
attempt to detect the buffer size of their partners 
would be affected. 
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4.2 Partial Transfers and Well-Known Ports 

Consider the situation shown in Figure 6, 

~ Well-Known 

A single service process is accepting requests 
from several different user processes (Pi-Pn). 
The service process might be a directory process, 
a compiler, or any other process which provides a 
general service and accepts messages through a 
well-known port (one which is known to all process- 
es without recourse to a directory or broker [5]; 
obviously, the broker process must have a well- 
known port). The example in Figure 6 demonstrates 
the problem. 

If P1 (in Figure 6) sends a message that is 
not complete to the service process (the EOM indi- 
cation is not ON) and does not fill the service 
process buffer, there are two problems we must 
consider. 

First the port must be "reserved" for Pi. We 
cannot allow a message from P2, for example, to be 
used to complete the RECEIVE request which was 
partially fulfilled by the partial message from Pi. 
Secondly we must devise some method of handling 
the situation when the reservation times out, 
since there is no way to tell P1 that the first 
part of the message has timed out and thus been 
ignored. Pl is preparing to send the second part 
and is not listening for incoming messages from 
the service process. This means that the second 
part of the message may eventually arrive with the 
EOM indication set so that it looks llke a com- 
plete message. 

Since none of these problems arise in a sys- 
tem without partial transfers, another solution 
is to ban partial transfers to service processes 
with well-known ports. This is the approach 
taker in ~22ANET, ~nkere communlcationto well- 
known ports are restricted to short, complete 
messages [9] which are used to setup a separate 
connection for subsequent communication (see 
Figure 7). 

It should also be noted that the problems with 
well-known ports arise through their interaction 
with tlme-outs and partial transfers. An IPCM with- 
out partial transfers will not have these problems 
since there is no time when only one party to the 
communication is awakened. True, the service pro- 
tess may not have the entire message, but it is 
awakened and may do whatever it pleases with the 
first part of the message (ignore it, buffer it, 
etc.); the burden is no longer on the IPCM. 

4.3 Processes Using Many Port s 

Consider the arrangement shown in Figure 8, 
where a server process accepts requests for service 
from many users. Such a situation actually came up 
in the design of SBS [2] where the REX was the 
service process. As all network communications go 
through REX it had to operate efficiently. 

RECEIVE 

~ v  . 2 0  Figure 8. 0 

First of all, some sort of primitlvethat 
checks several ports simultaneously is required ~, 
since we are examining systems where a process goes 
to sleep upon executing an IPC primitive. This 
primitive may actually perform the operation (it 
may act as a llst of RECEIVE's with different ports 
and possibly different buffer areas) or it may be a 
QUERY operation, which does not transfer data, but 
awakens the service process when data is available 
on any of the ports (the service process may then 
issue a RECEIVE). 

Also if the service process is to run effi- 
ciently it should not be made to wait on a partial 
transfer from one process while thereis a complete 
request to be processed. The question once again 
is what to do with partial transfers. Suppose,we 
had a SEND 25 from Pi (in Figure 8). If we put 25 
words in a buffer in the service process, we are 
forcing the service process to have a separate 
buffer for each request. It we do not wish to make 
this requirement, what shall we do about the mes- 
sage? If we wake up the service process and tell 
it about the 25 words, the strict insertion pro- 
perty is violated (and so is the definition of 
partial transfers). If the service process re- 
mains aslee p and awaits the rest of the message 
from PI, we would not be able to process a complete 
message which might arrive from P2, and would thus 
fail to process the first complete message to 
arrive. 

Even if we allow separate buffers for separate 
ports, we have problems. If the 25 words from P1 
are stored in a buffer while the service process 
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continues (asleep) to wait for messages from all 
ports, a complete message may come in from some 
other process. The service process must now be 
awakened, for there is a complete message awaiting 
its attention. If the service process is told 
about the partial message from Pi, the strict in- 
sertion property will be violated. More important- 
ly, the service process will be forced to implement 
internal buffering. On the other hand, if nothing 
is said to the service process about the partial 
message from Pi, the IPCM would lose all record of 
the message without telling anyone, a poor feature 
to design into any IPCM. 

One solution to this problem might be to for- 
bid partial transfers in this situation. Another 
is to ban them altogether and use either the stand- 
ard buffer size or the wake-up on matching scheme. 
However, if the network supports partial transfers 
at all, a service process like REX (which partici- 
pates in every network communication) must also 
accept partial transfers. A solution with partial 
transfers is presented below. 

4.4 Buffer Processes 

This solution to the above problem assumes 
that the system supports dynamic process creation. 
In Figure 9 we show the modified configuration 
where the S. act as buffer processes in the com- 
munication ~etween the Pi and the service process. 

Figure 9. 

Whenever a process Pi asks to be connected to the 
service process, a new Si is created for it and the 
connection shown in Figure 9 is established. Each 
S i accepts data from Pi until a logical message is 
complete, sleeping whenever necessary. It can then 
forward the complete message (with the EOM indica- 
tion on) to the service process. All the messages 
received by the service process are complete since 
partial transfers are "filtered out" at the level 
of S i . 

With reference to the problem of partial 
transfers to well-known ports (section 4.2), we 
note that a similar solution is not possible there: 
the S i can only be inserted when the connection is 
initialized but communication through well-known 
ports does not involve initialization. Also re- 
call that the ARPANET solution to thisproblem 
creates the configuration shown in Figure 7. Al- 
though S i may be inserted between Pi and the well- 
known process during the establishment of the sep- 
arate connection, the original well-known port 
still remains (and cannot have partial transfers). 

At least one such well-known port, accessible with- 
out initializaticq, is inevitable in any system: 
this would belong to a directory or broker process 
through which all other connections are initialized. 

5. Concluding Remarks 

At several points in this discussion, we have 
stated that certain sets of properties do not go 
together, and have indicated modifications to elim- 
inate the inoompatibilities. It should be empha -~ 
sized that these modifications by themselves do not 
guarantee realizability - they only indicate the 
existence of a suitable set of primitives to 
achieve the desired behavior. Also, the inclusion 
of other features, not discussed in this paper, may 
further complicate the problem. 

In discussing status returned to the users, we 
have indicated how the presence of certain other 
features limits the information that can be pro- 
vided. In fact, we have shown situations in which 
uncertain status had to be returned, providing al- 
most no information as to the outcome of the trans- 
action. Because of this, one might be tempted to 
design a system which provides no status at all. 
However, in a well-designed system with reasonable 
time-out intervals, etc., the above situations 
should not occur with any frequency, and it is still 
possible to provide meaningful status most of the 
time. 

The insertion property, in its strict form, 
imposes far too many constraints and complicates 
the design of the system, so that it is difficult 
to make a case for it. On the other hand, the 
weaker version is relatively easy to incorporate; 
and has most of the benefits of the stronger ver- 
sion. In particular, it permits the design of 
user programs which are insensitive to changes in 
the environment. 

Finally, we list a set of features which may 
be combined in a working IPCM. 

(i) Time-outs 
(2) Weak insertion property and partial 

transfer 
(3) Buffer processes to allow 

a) many-to-one ports, and 
b) service processes using multiple, 

independent ports to handle re- 
quests arriving asynchronously 

(4) Well-known ports - with appropriate 
methods to deal with partial transfers 
to them. 

A similar set of features is designed into SBS. 

APPENDIX: User Implemented Protocols 

To show that no amount of user protocol can 
solve the problem in a manner to dissipate the 
anxiety of both parties as to the outcome of a 
transaction, consider the following model. 

A group of gangsters are about to pull off a 
big Job. The plan of action is prepared down to 
the last detail~ Some of the men are holed up in a 
warehouse across town, awaiting precise instruc- 
tions. It is absolutely essential that the two 
groups act with complete reliance on each other in 
executing the plan. 
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Of course, they will never get around to put- 
ting the plan into action, because the following 
sequence of events is bound to take place. 

i. A messenger is dispatched across town, 
with instructions from the boss. 

2. The messenger reaches his destination. 
At this point both parties know the plan 
of action. But the boss doesn't know 
that his message got through (muggings 
are a common occurrence). So the messen- 
ger is sent back, to confirm the message. 

3. The messenger reaches the boss safely. 
Now, everybody knows the message got 
through. Of course, the men in the 
warehouse are not aware that step 3 
occurred, and must he reassured. Off 
goes the messenger. 

4. Now the men in the warehouse too know 
that step 3 was successful, but unless 
they communicate their awareness... 

. . . . . . .  

. . . , . . .  

Note that the needs of both parties are quite rea- 
sonable. They simply want to reach a state where 

(I) The original message (i.e., the plan of 
action) is successfully delivered, and 

(2) Both parties know that they are in 
mutual agreement that (i) occurred. 

Fact The sequence cannot terminate successfully. 
Proof (a) Clearly the sequence contains at least 

one message of importance. 
(b) Assume that it is possible to reach the 

desired state after a finite sequence 
of messages. Then there must exist a 
number n > 1 such that n is the length 
of the shortest sequence which gets us 
to this state. Since this is the short- 
est sequence, the last message in it is 
important: if the n'th message gets 
lost, the desired state cannot be 
reached. The sender of the n'th mes- 
sage must receive acknowledgment. 
This means that the sequence is at 
least of length n + i. The assumption 
is contradicted and the sequence cannot 
be finite. 

Note also that the sequence is infinite even when 
none of the messages are actually lost. 

At first glance it would seem that if the two 
processes are in continuous communication, the 
problem can be solved by including a sequence num- 
ber [8] as part of each message. But this is not 
really so: sequence numbers are analogous to the 
step numbers in the above example. At any time 
the process receiving the highest numbered message 
knows the complete state while the other lives in 
doubt. Thus in practice only sequential events 
can be controlled but simultaneity cannot he 
achieved by this means. 
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